 CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2022/2023
UPOZORNĚNÍ: Jsou dostupné studijní plány pro následující akademický rok.

# Ordinary Differential Equations

Code Completion Credits Range Language
2012018 KZ 3 2P+1C Czech
Garant předmětu:
Tomáš Neustupa
Lecturer:
Luděk Beneš, Tomáš Neustupa
Tutor:
Luděk Beneš, Tomáš Neustupa
Supervisor:
Department of Technical Mathematics
Synopsis:

The course expect the understanding of the subjects of previous study on „Alpha“ level.

Outline of concepts and technics of solving differential equations of first order. Autonomous systems. Geometrical aspects of phase plane. Stability of solution.

Requirements:
Syllabus of lectures:

• The overview of methods for solving ODE of the first order. Separation of variables, Bernouli's method, variation of parameters, integral factor method.

• Existence and uniqueness of the solution of the Cauchy problem.

• Specific applications of differential equations (move of a body, population models, changes in concentration of substances ...).

• Systems of differential equations. From equation of higher other to the system of equations of first order. Existence and uniqueness of solution. Properties of solution. Methods for solving (Euler's meth., var. of parameters).

• Stability of equilibrium solution of differential equation.

• Stability of linear and nonlinear systems. Criterion of stability. Attractors.

• Stability and linearization.

• Stability and Ljapunov functions.

• Extension to calculus (sequences of numbers, Cauchy sequence, sequences of functions, uniform convergence, linear space, scalar product, Hilbert space).

• Generalized Fourier's series. Bessel's inequality. Parceval's equality. Applications in differential equations.

• Basic introduction to Laplace transform and its use for differential equations.

Syllabus of tutorials:
Study Objective:
Study materials:

• Burda, P.: Mathematics III, Ordinary Differential Equations and Infinite Series, CTU Publishing House, Prague, 1998.

• W.A.Adkins, M.G.Davidson: Ordinary differential equations. 2004.

• Stanley J. Farlow: An introduction to differential equations and their applications. McGraw Hill, Inc., New York

• J.Polking, A.Boggess, D.Arnold: Differential Equations. Prentice Hall 2001

• R.K.Nagle, E.B.Saff: Fundamentals of Differential Equations and Boundary Value Problems. Addison W.Publ.Co.1993

Note:
Time-table for winter semester 2022/2023:
 06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00 roomKN:A-309Neustupa T.12:30–14:00(lecture parallel1)Karlovo nám.Posluchárna KA309roomKN:A-309Neustupa T.14:15–15:00(parallel nr.1)Karlovo nám.Posluchárna KA309
Time-table for summer semester 2022/2023:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2023-06-03
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet1895806.html