Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2023/2024
UPOZORNĚNÍ: Jsou dostupné studijní plány pro následující akademický rok.

Data Mining

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
BIE-VZD Z,ZK 4 2P+2C English
Garant předmětu:
Daniel Vašata
Lecturer:
Rodrigo Augusto Da Silva Alves, Daniel Vašata
Tutor:
Rodrigo Augusto Da Silva Alves, Daniel Vašata
Supervisor:
Department of Applied Mathematics
Synopsis:

Students are introduced to the basic methods of discovering knowledge in data. In particular, they learn the basic techniques of data preprocessing, multidimensional data visualization, statistical techniques of data transformation, and fundamental principles of knowledge discovery methods. Students will be aware of the relationships between model bias and variance, and know the fundamentals of assessing model quality. Data mining software is extensively used in the module. Students will be able to apply basic data mining tools to common problems (classification, regression, clustering).

Requirements:

The knowledge of calculus, linear algebra and probability theory is assumed.

Syllabus of lectures:

1. Introduction to the field and applications

2. Decision trees, test, train, validation set

3. Ensemble methods (random forest, AdaBoost)

4. Hierarchical clustering, k-means algorithm

5. kNN (k-nearest neighbours)

6. Naive Bayes

7. Linear regression

8. Logistic regression

9. Ridge regression and regularisation

10. Dimensionality reduction

11. Neural networks

12. Natural language processing

Syllabus of tutorials:

1. Jupyter notebooks and machine learning packages

2. Decision trees, hyperparameters tuning

3. Ensemble methods (random forest, AdaBoost)

4. Hierarchical clustering, k-means algorithm

5. kNN (k-nearest neighbours), cross-validation

6. Naive Bayes classifier

7. Linear regression

8. Logistic regression

9. Ridge regression

10. Dimensionality reduction

11. Neural networks

12. Natural language processing

Study Objective:

The module aims to introduce students to a rapidly developing field - knowledge discovery in data.

Study materials:

1. Data Mining: Practical Machine Learning Tools and Techniques, I. H. Witten, E. Frank, M. A. Hall, Elsevier, 2011, ISBN 978-0080890364.

2. Deep Learning, I. Goodfellow, Y. Bengio, A. Courville, MIT Press, 2016, ISBN 978-0262035613.

3. Machine Learning: A Probabilistic Perspective, K. P. Murphy, MIT Press, 2012, ISBN 978-0262018029.

Note:
Further information:
https://courses.fit.cvut.cz/BIE-VZD/
Time-table for winter semester 2023/2024:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
Tue
roomT9:346
Da Silva Alves R.
09:15–10:45
(lecture parallel1)
Dejvice
NBFIT učebna
roomT9:303
Da Silva Alves R.
11:00–12:30
(lecture parallel1
parallel nr.101)

Dejvice
NBFIT PC ucebna
Wed
Thu
Fri
Time-table for summer semester 2023/2024:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2024-05-29
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet1449206.html