Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2024/2025

Coding in digital communications

The course is not on the list Without time-table
Code Completion Credits Range Language
A2M37KDK Z,ZK 5 3+1c Czech
Vztahy:
During a review of study plans, the course B2M37KDK can be substituted for the course A2M37KDK.
It is not possible to register for the course A2M37KDK if the student is concurrently registered for or has already completed the course B2M37KDK (mutually exclusive courses).
It is not possible to register for the course A2M37KDK if the student is concurrently registered for or has already completed the course A8M37CDC (mutually exclusive courses).
Garant předmětu:
Lecturer:
Tutor:
Supervisor:
Department of Radioelectronics
Synopsis:

The course extends and deepens the topics of the basic DKM course in the following main areas. 1) The information theory builds a fundamental framework for thorough understanding the principles of the channel coding, adaptation, sharing, and diversity/multiplexing of the MIMO systems. 2) We develop advanced coding techique, particularly turbo-codes, LDPC codes and space-time codes for MIMO. 3) We explain essential principles of iterative decoding methods for turbo and LDPC codes.

Requirements:

see moodle.fel.cvut.cz

Syllabus of lectures:

1. Information theory, basic definitions, entropy, mutual information.

2. Channel capacity (ergodic, nonergodic, discrete, AWGN, MIMO), coding theorems.

3. Multiuser systems, MAC and BC channel, capacity region. Channel sharing CDMA, FDMA, TDMA, SDMA. Coding and decoding strategies for MAC and BC channels (DPC codes, MU decoding).

4. Adaptive modulation and coding. Adaptation algorithms, capacity.

5. Space-Time MIMO systems. Diversity, multiplexing gain, capacity. Sufficient statistic, MRC.

6. Codes on the GF(m). Polynomial representation. Properties, structures.

7. Coding/decoding algorithms for linear and cyclic codes (Hamming, BCH, RS, ...). Decoding error rate.

8. Convolutional codes (recursive, nonrecursive). Properties, structures. Polynomial representation. Transfer function.

9. Coding/decoding algorithms for convolutional codes. Decoding error rate.

10. Constellation space codes. Trellis codes TCM. Differential codes.

11. Turbo-codes, LDPC codes. Codes on graphs.

12. Iterative decoding algorithms. FBA algorithm and Soft-In Soft-Out blocks.

13. SPA algorithm on the Factor Graph.

14. Space-Time codes for MIMO (block, trellis, layered).

Syllabus of tutorials:

1. Capacity and capacity region evaluation for example channels.

2. Implementation of the adaptive modulation and coding (water-filling).

3. Implementation of the diversity reception with MRC.

4. Transfer function of the FSM code. Free distance spectrum.

5. Implementation of the turbo and LDPC code.

6. Iterative decoder (FBA, SPA/FG).

7. Evaluation of the projects.

Study Objective:

Broadening knowledge on digital communication.

Study materials:

1. J. G. Proakis: Digital Communications. McGraw-Hill. 2001

2. D. Tse, P. Viswanath: Fundamentals of Wireless Communications, Cambridge University Press, 2005

3. E. Biglieri: Coding for Wireless Channels, Springer, 2005

4. B. Vucetic, J. Yuan: Space-Time Coding, John Wiley & Sons, 2003

5. Goldsmith: Wireless communications, Cambridge University Press, 2005

6. B. Vucetic, J. Yuan: Turbo codes - principles and applications, Kluwer academic publishers, 2000

7. Oppermann I., Hamalainen M., Iinatti J.: UWB theory and applications, John Wiley & Sons, 2004

8. Meyr, H., Moeneclaey, M., Fechtel, S. A.: Digital Communication Receivers-Synchronization, Channel Estimation and Signal Processing. John Wiley. 1998

9. Mengali, U., D'Andrea, A. N.: Synchronization Techniques for Digital Receivers. Plenum Press. 1997

10. R. E. Blahut: Algebraic codes for data transmission, Cambridge University Press, 2006

11. T. M. Cover, J. A. Thomas: Elements of Information Theory, John Wiley & Sons, 1991

12. S. M. Kay: Fundamentals of statistical signal processing-estimation theory, Prentice-Hall 1993

13. S. M. Kay: Fundamentals of statistical signal processing-detection theory, Prentice-Hall 1998

Note:
Further information:
https://moodle.fel.cvut.cz/courses/A2M37KDK
No time-table has been prepared for this course
The course is a part of the following study plans:
Data valid to 2024-09-08
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet12582704.html