Electronics and Microelectronics

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
A4B34EM Z,ZK 6 2P+2L Czech
Jiří Jakovenko (guarantor), Vladimír Janíček, Vít Záhlava
Jiří Jakovenko (guarantor), Vladimír Janíček, Vít Záhlava
Department of Microelectronics

Semiconductors fundamentals, PN junction. Bipolar transistor, MOSFET structure. Fundamentals of Integrated systems processing technologies. CMOS technology, layout design, design rules. Analogue CMOS integrated circuits blocks, AD and DA convertors. Memory structures. Micro-electro-mechanical systems. Optoelectronics devices.

Syllabus of lectures:

1.Microelectronics and integrated circuit design history, roadmaps, Moor?s laws, IO design methodologies, current trends

2.Semiconductors fundamentals - types and properties, PN junction, metal-semiconductor junction, diode.

3.Bipolar transistor, MOSFET - architecture, working principle, substitutive models.

4.Fabrication process of semiconductor devices and integrated circuits.

5.CMOS fabrication process, layout, topological masks, isolation methods, CMOS process variances, interconnection technology.

6.Advanced IC technologies, advanced sub-micron technologies, SOI, RF IC.

7.Software tools for IC design, analogue, digital and mix-signal integrated systems design methodologies, design abstraction levels, application specific integrated systems, design economical aspects.

8.Layout design, design rules, parasitics, parasitics extraction. Interconnection design methods, delay calculation, time analysis, crosstalk and interference problems.

9.CMOS logic gate parameters, gate power dissipation, delay, bus drivers.

10.Fundamental blocks of analogue CMOS ICs, operational amplifier.

11.Integrated AD and DA converters - types, speed and power dissipation.

12.Integrated memories structures - DRAM, SRAM, EEPROM, Flash.

13.Design of Micro-electro-mechanical systems (MEMS), technologies, application.

14.Optoelectronics fundamentals, photodiode, phototransistor, laser, LED - parameters, applications.

Syllabus of tutorials:

1.Introduction to CADENCE design tools.

2.CMOS design kits and libraries, simulator Spectre - analysis types. Models for active and passive devices.

3.Design, simulation and testing of amplifier stage.

4.Logic gates static and dynamic parameters and characteristics of CMOS transmition gate.

5.Analog design, tests and testbenches .

6.Influence of processing variances, Corner analysis, Monte Carlo analysis.

7.Layout of analogue IC.

8.Layout of analogue IC.

9.Design rule check, parasitic extraction.

10.Digital IC design flow, simulations.

11.Digital design synthesis and verification.

12.Student project

13.Student project

14.Work presentation, final assessment

Study Objective:
Study materials:

P. Gray, P Hurst, S. Lewis, R. Mayer: "Analysis and Design of Analog

Integrated Circuits", John Wiley and Sons, 2000

Further information:
Time-table for winter semester 2021/2022:
Time-table is not available yet
Time-table for summer semester 2021/2022:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2022-08-09
For updated information see http://bilakniha.cvut.cz/en/predmet12582004.html