Modern Sensors and Signal Processing

The course is not on the list Without time-table
Code Completion Credits Range Language
A3M38MSZ Z,ZK 6 2P+2L Czech
Department of Measurement

The course is aimed to broaden the sensors basics by topics necessary for design of sensors and sensor systems. Prospective sensor types are covered as well as methods of the processing of the sensor signal. Sensors and sensor systems are shown in applications and by case design studies. The labs are concentrated to the complex measurement of the sensor parameters and to FEM modeling and its experimental verification. Optical sensors and their applications are covered in detail by following course „Videometry“.


Basic courses of Physics, Electric circuits, Mathematics and Sensors and instrumentation.

Syllabus of lectures:

1. Sensor principles, basic parameters, MEMS.

2. Materials for sensors and their measurement.

3. Modelling and design of sensors.

4. Uncertainties and their propagation, methods for the suppression of uncertainties. Noise measurement.

5. Identification, calibration and testing of sensors. Standards.

6. Correction of static and dynamic errors. Intelligent sensors.

7. Sensor signal processing: correlation methods, PSD, filtration and data fusion, homographic methods.

8. Sensor networks and sensor fields. Power and excitation for sensors.

9. EMC, shielding. Sensors for medical diagnostics.

10. Sensor applications in automotive, aerospace and space technology.

11. Security applications of sensors. Sensors for virtual and augmented reality.

12. Sensors for intelligent buildings and industry.

13. Sensors for geophysics and archeology.

14. Technology for sensor production.

Syllabus of tutorials:

1. Introduction

2. Modulation and synchronous detection (vibration measurement)

3. Plug-in cards for DC measurements (strain gauges and torque measurement)

4. Position measurement, calibration of ultrasound distance meter by digital scope

5. Plug-in cards and virtual instrumentation for dynamic measurement (LabView)

6. Correlation measurement: FFT and LabWindows

7. Datalogger (accelerometer)

8. Flow measurement

9. Semiconductor temperature sensors

10. Measuring amplifier versus measuring system (resistance thermometers)

11. HART and analog processor (processing of the signal form thermocouple)

12. Contactless temperature measurement

13. Sensors for gas analysis and for humidity measurement

14. Assessment

Study Objective:
Study materials:

[1] Ripka, P., Tipek, A.(ed.): Moden Sensors Handbook. ISTE 2007, ISBN 978-1-905209-66-8

[2] Fraden J.: Handbook of Modern Sensors. Springer 2004

[3] Ripka P. (ed.): Magnetic Sensors and Magnetometers. Artech 2001

Further information:
No time-table has been prepared for this course
The course is a part of the following study plans:
Data valid to 2022-08-14
For updated information see http://bilakniha.cvut.cz/en/predmet12543304.html