Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2022/2023
UPOZORNĚNÍ: Jsou dostupné studijní plány pro následující akademický rok.

Physics I. - Seminary

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
E026002 Z 2 0P+2C English
Garant předmětu:
Lecturer:
Miroslav Jílek, Daniel Tischler
Tutor:
Miroslav Jílek, Daniel Tischler
Supervisor:
Department of Physics
Synopsis:

Solving of problems corresponding to the lectures of Physics I.

Requirements:

Active presence on seminars + minimum 75 % of presence.

Syllabus of lectures:

1. Physical quantities - vectors and scalars. Kinematics of a particle motion in one dimension.

2. Motion in two or three dimensions, circular motion. Newton's laws of motion. Galileian transformation.

3. Motion equations, applications. Dynamics of a circular motion. Work and energy. Principle of conservation of energy. Momentum, impulse, collisions. Centre of mass. Rigid body. Rotational and translational motions, the torque. Conservation of momentum and angular momentum.

4. Gravitation, Newton's law of universal gravitations. Potential and intensity of a gravitational filed, satellites. Fluid mechanics, surface tension.

5. Continuity equation, Bernoulli's equation. Viscosity. Temperature, heat, calorimetry. Internal energy, first law of thermodynamics.

6. Thermodynamic processes. The Carnot cycle. Equipartition of energy theorem. The second law of thermodynamics, entropy, probability, information.

7. Elasticity, stress, strain, elastic moduli. SHM, the physical pendulum, the simple pendulum, damped oscillations, forced oscillations, resonance.

8. Mechanical waves, types, mathematical description, sound, beats, the Doppler effect.

9. Electric charge, electric filed, intensity. Electric flux, Gauss's law, electric potential.

10. Capacitors, capacitance, energy of electric field, Gauss' law in dielectrics.

11. Electric current, resistivity, resistance, electromotive force.

12. Direct-current circuits, Kirchhoff's rules, power and energy in electric circuits.

13. Magnetic field, the Hall effect, magnetic materials.

14. Mass spectrometer, cyclotron. Sources of magnetic filed, Ampere's law.

Syllabus of tutorials:

1. Physical quantities - vectors and scalars. Kinematics of a particle motion in one dimension.

2. Motion in two or three dimensions, circular motion. Newton's laws of motion. Galileian transformation.

3. Motion equations, applications. Dynamics of a circular motion. Work and energy. Principle of conservation of energy. Momentum, impulse, collisions. Centre of mass. Rigid body. Rotational and translational motions, the torque. Conservation of momentum and angular momentum.

4. Gravitation, Newton's law of universal gravitations. Potential and intensity of a gravitational filed, satellites. Fluid mechanics, surface tension.

5. Continuity equation, Bernoulli's equation. Viscosity. Temperature, heat, calorimetry. Internal energy, first law of thermodynamics.

6. Thermodynamic processes. The Carnot cycle. Equipartition of energy theorem. The second law of thermodynamics, entropy, probability, information.

7. Elasticity, stress, strain, elastic moduli. SHM, the physical pendulum, the simple pendulum, damped oscillations, forced oscillations, resonance.

8. Mechanical waves, types, mathematical description, sound, beats, the Doppler effect.

9. Electric charge, electric filed, intensity. Electric flux, Gauss's law, electric potential.

10. Capacitors, capacitance, energy of electric field, Gauss' law in dielectrics.

11. Electric current, resistivity, resistance, electromotive force.

12. Direct-current circuits, Kirchhoff's rules, power and energy in electric circuits.

13. Magnetic field, the Hall effect, magnetic materials.

14. Mass spectrometer, cyclotron. Sources of magnetic filed, Ampere's law.

Study Objective:

Better understanding of topics on lectures.

Study materials:

Young, H.D., Freedman, R.A.: Sears and Zemansky' University Physics, 10th edition, Addison-Wesley, 2000, Vesela E., Physics I, CTU Publishing House, Prague, 2003, Vesela E., Vacek V. Physics - Laboratory Experiments, CTU Publishinhg House, Prague 1999

Note:
Time-table for winter semester 2022/2023:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
Tue
Wed
roomT4:A1-307a
Tischler D.
14:15–15:45
(parallel nr.1)
Dejvice
Učebna 307
Thu
Fri
Time-table for summer semester 2022/2023:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2023-06-03
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet1046306.html