Surfaces in Action 2: Bringing Surfaces to Life!
Kód | Zakončení | Kredity | Rozsah | Jazyk výuky |
---|---|---|---|---|
18SIA2 | KZ | 3 | 2P | anglicky |
- Garant předmětu:
- Přednášející:
- Cvičící:
- Předmět zajišťuje:
- katedra softwarového inženýrství
- Anotace:
-
How can we translate elegant mathematical models of moving surfaces into working simulation tools? This course continues from Surfaces in Action I: Ready to Move?, diving into how evolving surfaces are actually computed in real-world applications. You will learn the true nature of the Finite Volume Method (FVM) for the industrial level problems, designing numerical solvers of partial differential equations on unstructured (polyhedral) meshes.
Through hands-on projects and step-by-step development, you will explore how geometry, curvature, and motion are encoded in numerical algorithms from gradient computations to curvature flows. You'll also learn how to structure your code in modern Fortran and C++ using object-oriented programming, version control, and mesh-based data structures at the industrial level of software. This course prepares you for MPI parallel computations, high-performance simulations, and scientific computing research that rely on physical consistency.
- Požadavky:
-
Basic linear algebra, Strong knowledge in Calculus, Basic understanding of Differential Geometry and Finite Difference Method, Fortran, C++, Linux
- Osnova přednášek:
-
1. Git Like a Scientist
Version control for reproducible scientific computing (Git, GitHub, SSH keys)
2. Whats Inside a Simulator? FIRE and the World of Industrial CFD
Exploration of commercial solvers and how academic code relates
3. Talking to Your Code: File I/O for Real-World Simulation Pipelines
Reading, writing, and parsing simulation input/output
4. How to Represent a Surface: Mesh Structures
Cells, faces, neighbors what makes a good mesh and why it matters
5. How to Measure Change: Least-Squares Gradient on Polyhedral Meshes
A practical method for computing gradients in complex geometries
6. Building Your First Solver: Object-Oriented PDE Design
Writing modular and reusable scientific code in Fortran/C++
7. Poisson Equation: The Workhorse of Physics
Discrete formulations and solvers for diffusion and potential problems
8. Advection in Action: Simulating Flow Fields
Numerically handling material transport across the mesh
9. Normal Motion and Geometric Front Propagation
Implementing speed functions based on interface geometry
10. Mean Curvature Flow: Simulating Shape Smoothing
Practical computation of curvature-driven motion on unstructured meshes
11. Putting It Together: From Geometry to Evolution
Connecting curvature, normal velocity, and PDE discretizations
12. Project Presentations
Challenges, solutions, and design decisions
- Osnova cvičení:
- Cíle studia:
- Studijní materiály:
-
[1] J. Hahn, K. Mikula, P. Frolkovic, M. Medla, and B. Basara, Iterative inflow-implicit outflow-explicit finite volume scheme for level-set equations on polyhedron meshes, Comput. Math. Appl., 77, 1639-1654 (2019).
[2] J. Hahn, K. Mikula, P. Frolkovic, and B. Basara, Inflow-based gradient finite volume method for a propagation in a normal direction in a polyhedron mesh, J. Sci. Comput., 72, 442465 (2017).
[3] P. Frolkovič, K. Mikula, J. Hahn, D. Martin, and B. Basara, Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh, Discrete Cont. Dyn-S, 14, 865-879, 2021.
[4] J. Hahn, K. Mikula, P. Frolkovič, M. Balažovjech, and B. Basara, Cell-Centered Finite Volume Method for Regularized Mean Curvature Flow on Polyhedral Meshes, Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, 755-763, (2020)
Linux, Fortran, and Git:
Fortran 101: https://fortran-lang.org/en/learn/
Fortran OOP: https://fortranwiki.org/fortran/show/Object-oriented+programming
Bash shell command: https://www.educative.io/blog/bash-shell-command-cheat-sheet
- Poznámka:
- Další informace:
- Pro tento předmět se rozvrh nepřipravuje
- Předmět je součástí následujících studijních plánů: