ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2023/2024

# Advanced Numerical Methods in Coupled Multiphysics Problems

Kód Zakončení Kredity Rozsah Jazyk výuky
D32PNM_EN ZK 2P anglicky
Garant předmětu:
Jaroslav Kruis
Přednášející:
Jaroslav Kruis
Cvičící:
Předmět zajišťuje:
katedra mechaniky
Anotace:

The aim of the course is to solve coupled multiphysics problems, e.g. thermoelasticity, coupled heat and moisture transfer, thermo-hydro-mechanical problem, electordiffusion, etc. First, the balance equations together with constitutive laws will be summarized for selected coupled multiphysics problems. Discretization in space and time (Galerkin-Bubnov method, Galerkin-Petrov method, generalized trapezoidal rule, etc.) will follow. Solution of systems of linear algebraic equations obtained after discretization (the use of symmetry and sparsity, direct methods, iterative methods). Solution of systems of nonlinear algebraic equations (Newton-Raphson method, the arc-length method). Utilization of parallel computers for solution of large problems based on domain decomposition methods.

The aim of the course is to solve coupled multiphysics problems, e.g. thermoelasticity, coupled heat and moisture transfer, thermo-hydro-mechanical problem, electordiffusion, etc. First, the balance equations together with constitutive laws will be summarized for selected coupled multiphysics problems. Discretization in space and time (Galerkin-Bubnov method, Galerkin-Petrov method, generalized trapezoidal rule, etc.) will follow. Solution of systems of linear algebraic equations obtained after discretization (the use of symmetry and sparsity, direct methods, iterative methods). Solution of systems of nonlinear algebraic equations (Newton-Raphson method, the arc-length method). Utilization of parallel computers for solution of large problems based on domain decomposition methods.

Elementary knowledge of ordinary and partial differential equations and theory of continuum.

Osnova přednášek:

1. Summary of theory of continuum medium (strain, stress, heat flux, etc.).

2. Description of pore space in porous material.

3. Viscous flow, Hagen law, capillary effects.

4. Basic balance equations.

5. Basic constitutive laws (Hook's law, Fourier's law, Darcy's law, Fick's law).

6. Coupled heat and moisture transport.

7. Coupled mechanics-moisture transport with influence of temperature.

8. Transport of chlorides.

9. Galerkin-Bubnov method for diffusion problems.

10. Galerkin-Petrov method for diffusion-advection problem.

11. Integration in time (generalized trapezoidal rule).

12. Systems of nonlinear algebraic equations, Newton-Raphson method.

13. Introduction of methods for solution of systems of linear algebraic equations.

Osnova cvičení:

1. Summary of theory of continuum medium (strain, stress, heat flux, etc.).

2. Description of pore space in porous material.

3. Viscous flow, Hagen law, capillary effects.

4. Basic balance equations.

5. Basic constitutive laws (Hook's law, Fourier's law, Darcy's law, Fick's law).

6. Coupled heat and moisture transport.

7. Coupled mechanics-moisture transport with influence of temperature.

8. Transport of chlorides.

9. Galerkin-Bubnov method for diffusion problems.

10. Galerkin-Petrov method for diffusion-advection problem.

11. Integration in time (generalized trapezoidal rule).

12. Systems of nonlinear algebraic equations, Newton-Raphson method.

13. Introduction of methods for solution of systems of linear algebraic equations.

Cíle studia:

Students will be introduced into multi-physics problems and their numerical solution based on the finite element method.

Studijní materiály:

R.W. Lewis, B.A. Schrefler: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. John Wiley &amp; Sons, 2000, Chichester, England.

O.C. Zienkiewicz, R.L. Taylor: The Finite Element Method. Volume 1 The Basis. Butterworth Heinemann, 2000, Oxford, UK, 5th edition.

O.C. Zienkiewicz, R.L. Taylor: The Finite Element Method. Volume 2: Solid Mechanics.Butterworth Heinemann, 2000, Oxford, UK, 5th edition.

O.C. Zienkiewicz, R.L. Taylor: The Finite Element Method. Volume 3: Fluid Dynamics. Butterworth Heinemann, 2000, Oxford, UK, 5th edition.

J. Kruis: Domain Decomposition Methods for Distributed Computing. Saxe-Coburg Publications, 2006, Stirling, Scotland, UK.

Poznámka:

KD, FMI

Další informace:
http://mech.fsv.cvut.cz/~jk
Rozvrh na zimní semestr 2023/2024:
Rozvrh není připraven
Rozvrh na letní semestr 2023/2024:
Rozvrh není připraven
Předmět je součástí následujících studijních plánů:
Platnost dat k 20. 6. 2024
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/cs/predmet6498206.html