Funkcionální analýza
Kód | Zakončení | Kredity | Rozsah | Jazyk výuky |
---|---|---|---|---|
D01FAN | ZK | 1P+1S | česky |
- Garant předmětu:
- Aleš Nekvinda
- Přednášející:
- Aleš Nekvinda
- Cvičící:
- Předmět zajišťuje:
- katedra matematiky
- Anotace:
-
Přednášky budou věnovány studiu Hilbertových a Banachových prostorů a operátorů na nich s ohledem na aplikace v teorii parciálních diferenciálních rovnic. Řekneme si něco o základních větách funkcionální analýzy, tj. Hahnova-Banachova, Banachova-Steinhausova věta a věta o otevřeném zobrazení a uzavřeném grafu. Boudou zavedeny pojmy duál a reflexivita, kvadratický funkcionál, dokázána věta o minimu a souvislost s operátorovou rovnicí. Dále dokážeme Rieszovu větu o reprezentaci a Laxova-Milgramovu větu. Zavedeme slabou konvergenci a dokážeme větu o slabé kompaktnosti jednotkové koule. Ukážeme si, že konvexní spojitý koercivní funkcionál na reflexivním prostoru má minimum. Zmíníme Browderovu větu o monotónních operátorech. Na závěr si ukážeme aplikace na eliptické problémy.
- Požadavky:
- Osnova přednášek:
- Osnova cvičení:
- Cíle studia:
- Studijní materiály:
- Poznámka:
-
MSI
- Rozvrh na zimní semestr 2024/2025:
- Rozvrh není připraven
- Rozvrh na letní semestr 2024/2025:
- Rozvrh není připraven
- Předmět je součástí následujících studijních plánů: