Numerické metody
Kód | Zakončení | Kredity | Rozsah | Jazyk výuky |
---|---|---|---|---|
D01NME | ZK | 4P | česky |
- Garant předmětu:
- Karel Kozel, Petr Mayer
- Přednášející:
- Karel Kozel, Petr Mayer
- Cvičící:
- Předmět zajišťuje:
- katedra matematiky
- Anotace:
-
Numerická algebra: Hledání kořenů rovnic soustav nelineárních rovnic. Metoda postupných aproximací. Aitkenův urychlovací proces. Newtonova metoda, modifikovaná Newtonova metoda. Soustavy lineárních algebraických rovnic. Eliminační metody Gaussova typu. Choleskiho rozklad. Soustavy s pásovými maticemi. Soustavy s pozitivně definitiními maticemi. Soustavy s třídiagonálními maticemi. Rychlé metody. Soustavy s řídkými maticemi. Iterační metody. Metody rozkladů (splitting up). Regulární rozklady. Metoda Jacobiho. Metoda Gaussova-Seidelova. Metoda SOR. Předpodmiňování soustav lineárních rovnic. Problémy vlastních hodnot. Mocninná metoda. Kelloggův proces. Metoda LR. Metoda QR. Zobecněný problém vlastních hodnot. Metoda inverzní iterace. Numerická analýza: Numerické počítání, zaokrouhlovací chyby, numerická stabilita. Numerický výpočet integrálů, numerický výpočet funkcionálů, numerický výpočet Fourierových koeficientů. Řešení počátečních úloh pro obyčejné diferenciální rovnice a jejich soustavy. Řešení okrajových úloh pro parciální diferenciální rovnice a jejich soustavy. Metoda konečných prvků, met. hraničních prvků. Evoluční úlohy s parciálními diferenciálními rovnicemi, racionální aproximace exponenciální funkce, Eulerova met. explicitní, Eulerova met. implicitní, met. Crankova-Nicholsonové, metody typu Runge-Kutta. Optimalizační metody, simplexová metoda, Uzawův algoritmus. Numerika nelineárních úloh, numerický výpočet bodu obratu, numerický výpočet bifurkačních bodů, určení centra singularit nelineární úlohy, Schmidtova - Lyapunovova redukce.
- Požadavky:
- Osnova přednášek:
- Osnova cvičení:
- Cíle studia:
- Studijní materiály:
- Poznámka:
- Rozvrh na zimní semestr 2024/2025:
- Rozvrh není připraven
- Rozvrh na letní semestr 2024/2025:
- Rozvrh není připraven
- Předmět je součástí následujících studijních plánů: