Logo ČVUT
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2018/2019

Komplexní analýza

Předmět není vypsán Nerozvrhuje se
Kód Zakončení Kredity Rozsah Jazyk výuky
B0B01KANA Z,ZK 4 2+2 česky
Podmínkou zápisu předmětu je dřívější úspěšné absolvování předmětů:
Matematická analýza 1 (B0B01MA1A)
Přednášející:
Cvičící:
Předmět zajišťuje:
katedra matematiky
Anotace:

Student se seznámí se základy teorie funkcí komplexní proměnné a jejími aplikacemi. Budou vysvětleny základní principy Fourierovy, Laplaceovy a Z-transformace, včetně aplikací zejména na řešení diferenciálních a diferenčních rovnic.

Požadavky:
Osnova přednášek:

1. Komplexní čísla. Limita a derivace funkce komplexní proměnné.

2. Cauchy-Riemannovy podmínky, holomorfnost. Harmonické funkce.

3. Elementární funkce. Křivkový integrál.

4. Cauchyova věta a Cauchyův integrální vzorec.

5. Reprezentace holomorfní funkce mocninnou řadou.

6. Laurentovy řady. Izolované singularity.

7. Reziduum. Reziduová věta a její aplikace.

8. Fourierovy řady a základní vlastnosti Fourierovy transformace.

9. Věta o inverzní Fourierově transformaci. Aplikace Fourierovy transformace.

10. Základní vlastnosti Laplaceovy transformace.

11. Inverzní Laplaceova transformace. Aplikace Laplaceovy transformace.

12. Základní vlastnosti Z-transformace.

13. Inverzní Z-transformace. Aplikace Z-transformace.

14. Rezerva

Osnova cvičení:
Cíle studia:
Studijní materiály:

[1] J. Hamhalter, J. Tišer: Funkce komplexní proměnné, ČVUT, Praha, 2001.

[2] H. A. Priestley: Introduction to Complex Analysis, Oxford University Press, Oxford, 2003.

[3] E. Kreyszig: Advanced Engineering Mathematics, Wiley, Hoboken, 2011.

[4] L. Debnath, D. Bhatta: Integral Transforms and Their Applications, CRC Press, Boca Raton, 2015.

Poznámka:
Další informace:
Pro tento předmět se rozvrh nepřipravuje
Předmět je součástí následujících studijních plánů:
Platnost dat k 20. 5. 2019
Aktualizace výše uvedených informací naleznete na adrese http://bilakniha.cvut.cz/cs/predmet5605206.html