Machine Learning Methods
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
BECM36MLM | Z,ZK | 6 | 2P+2C | English |
- Course guarantor:
- Filip Železný
- Lecturer:
- Ondřej Kuželka, Gustav Šír, Filip Železný
- Tutor:
- Ondřej Kuželka, Gustav Šír
- Supervisor:
- Department of Computer Science
- Synopsis:
-
Students will get familiar with machine learning methods that go beyond the standard settings taught in basic ML courses. They will learn methods that work well for tabular and structured data domains (e.g. relational databases), including graph neural networks and recent neuro-symbolic techniques. The course will also teach the students some methods for model interpretability, basics of causality, and reinforcement learning.
- Requirements:
- Syllabus of lectures:
-
1. Learning from Tabular data
2. Ensembling and boosting
3. Learning from Structured data
4. Graph Neural Networks
5. Neural-Symbolic methods
6. ML Interpretability
7. ML Operations
8. Potential outcomes - Rubin-Neyman causal model, uplift modeling
9. Intro to Pearls causality
10. A/B tests and multi-armed bandit problems, UCB algorithm.
11. Bayesian bandits (Thompson sampling). Contextual bandits.
12. Markov decision processes
13. Tabular RL: Q-Learning and SARSA
14. Deep RL: Deep Q-learning. Policy gradient.
- Syllabus of tutorials:
- Study Objective:
- Study materials:
- Note:
- Further information:
- No time-table has been prepared for this course
- The course is a part of the following study plans: