Linear Algebra 2
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
01YLAL2 | Z,ZK | 4 | 2P+2C | English |
- Course guarantor:
- Lecturer:
- Tutor:
- Supervisor:
- Department of Mathematics
- Synopsis:
-
Outline:
1. Inverse matrix and operator.
2. Permutation and determinant.
3. Spectral theory (eigenvalue, eigenvector, diagonalization).
4. Hermitian and quadratic forms.
5. Scalar product and orthogonality.
6. Metric geometry.
7. Riesz theorem and adjoint operator.
Outline of the exercises:
1. Methods for calculation of inverse matrices.
2. Methods of calculation of determinants.
3. Calculation of eigenvalues and eigenvectors.
4. Hermitian and quadratic forms. Canonical form.
5. Scalar product and orthogonality. Calculation of orthogonal complements.
6. Geometry exercises and examples.
7. Adjoint operators.
- Requirements:
-
Knowledge of Linear algebra 1 (LAL1) is demanded. Only students who have passed the exam in LAL1 are admitted to the exam in LAL2.
- Syllabus of lectures:
- Syllabus of tutorials:
- Study Objective:
- Study materials:
-
Key references:
[1] L. Dvořáková: Linear algebra 2, textbook, available online on request
[2] T. M. Apostol: Linear Algebra: A First Course with Applications to Differential Equations, John Wiley & Sons, 2014
[3] R. C. Penney: Linear algebra and applications, John Wiley &Sons, 2015
Recommended references:
[3] G. Strang: Introduction to Linear Algebra, Wesley Cambridge Press, 2016
- Note:
- Further information:
- No time-table has been prepared for this course
- The course is a part of the following study plans: