Mathematical Methods for Data Analysis
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
11MMAD-E | Z,ZK | 6 | 3P+3C | English |
- Garant předmětu:
- Magdalena Hykšová, Ivan Nagy
- Lecturer:
- Magdalena Hykšová, Ivan Nagy
- Tutor:
- Magdalena Hykšová, Ivan Nagy
- Supervisor:
- Department of Applied Mathematics
- Synopsis:
-
Stocastic modelling, estimation, prediction, filtration, control, methods of data analysis: k-means, DBSCAN, naive Bayes, decision trees, support vector machine.
- Requirements:
-
Probability, classical statistics, basics of algebra and calculus
Forms tests, semestral work (assesment), oral exam
- Syllabus of lectures:
- Syllabus of tutorials:
- Study Objective:
-
To teach students the basic of dynamic statistic, i. e. analysis of data evolving in time. The accent is given to methods of clustering ans classification. Theoretical exposision of the subject is closely bound with a practical realization of the tasks in computer.
- Study materials:
-
William M. Bolstad: Introduction to Bayesian Statistics, 2nd Edition. Willey, ISBN-13: 978-0470141151
P.Tan, M.Steinbach, V.Kumar: Introduction to Data Mining. Pearson Education, Inc., 2006. ISBN 0-321-32136-7
materiály na webu: http://staff.utia.cas.cz/suzdaleva/
- Note:
- Time-table for winter semester 2024/2025:
- Time-table is not available yet
- Time-table for summer semester 2024/2025:
- Time-table is not available yet
- The course is a part of the following study plans:
-
- navaz. mag. PRE program IS joint degree 22/23 (nová akreditace) (compulsory course)
- navaz. mag. PRE program IS v EN 23/24 (compulsory course)
- navaz. mag. PRE program IS joint degree 24/25 (nová akreditace) (compulsory course)