Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2024/2025

Numerical methods of algebra

The course is not on the list Without time-table
Code Completion Credits Range Language
W01OZ003 ZK 52P+26C Czech
Garant předmětu:
Lecturer:
Tutor:
Supervisor:
Department of Technical Mathematics
Synopsis:

Elementary problems of linear algebra and their formulation.

Direct methods of solution of systém of linear equations.

Classical iterative methods, Jacobi, Gauss-Seidel and super-relaxation methods.

Gradient methods, steepest descent and conjugate gradient methods.

GMRES method.

Ill conditioned problems and their solution, pre-conditioning.

Solution of eigenvalue problems, generalized eigenvalue problems.

Solution of systems of non-linear aglebraic equations.

Requirements:
Syllabus of lectures:
Syllabus of tutorials:
Study Objective:
Study materials:

C.T. Kelley , Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, 1995

M. Fiedler.: Speciální matice a jejich použití v numerické matematice, SNTL, 1981.

R.S. Varga, Matrix Iterative Analysis, Springer 2009.

A.George, J.W Liu.: Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall 1981.

Golub, G.H., van Loan, Ch.F.: Matrix Computations, 996 The Johns Hopkins Univ. Press.

Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations, 1994, Springer-Verlag

Meurant, G.: Computer Solution of Large Linear Systems, 1999, Elsevier.

Segeth, K.: Numerický software I., 1998, Karolinum.

Note:
Further information:
http://marian.fsik.cvut.cz/~svacek/numalg/index.html
No time-table has been prepared for this course
The course is a part of the following study plans:
Data valid to 2024-04-17
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet6653006.html