Regression Data Analysis
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
01RAD | Z,ZK | 5 | 2P+2C | Czech |
- Course guarantor:
- Lecturer:
- Tutor:
- Supervisor:
- Department of Mathematics
- Synopsis:
-
1.Simple linear regression: least squares estimation, properties of parameter estimates, hypotheses tests and confi-dence intervals for parameters of the model, model-based prediction, analysis of residuals
2.Multiple linear regression: general linear model, least squares estimation, analytical and numerical solutions of the normal equations, properties of parameter estimates, coefficient of determination, F-test, prediction intervals
3.Residuals, diagnostics and transformations: residuals and residual plots, normality tests, detection of outlying and influential observations, hat matrix, Cooks distance, transformations of dependent and independent varia-ble, Box-Cox transformation
4.Selection of a regression model: criteria functions, R2 statistics, Mallows Cp statistics, Akaike and Bayes infor-mation criteria, stepwise regression and backward elimination
5.Multicollinearity: impact of multicollinearity on precision of the parameter estimates, detecting and combatting multicollinearity, ridge regression
- Requirements:
- Syllabus of lectures:
- Syllabus of tutorials:
- Study Objective:
- Study materials:
-
Key references:
[1] Golberg, M. Cho, H.A.: Introduction to Regression Analysis. WITpress, Southampton 2010.
[2] Olive, D.: Linear Regression. Springer, 2017.
Recommended references:
[3] Weisberg, S.: Applied Linear Regression. John Wiley & Sons, New Jersey 2014.
- Note:
- Further information:
- No time-table has been prepared for this course
- The course is a part of the following study plans:
-
- Aplikované matematicko-stochastické metody (compulsory course in the program)