Micromechanics of Heterogeneous Materials I (Analytical Methods)
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
D32MH1_EN | ZK | 2P | English |
- Garant předmětu:
- Jan Zeman
- Lecturer:
- Jan Zeman
- Tutor:
- Supervisor:
- Department of Mechanics
- Synopsis:
-
The course will cover analytical methods for multiscale modeling of heterogenous materials, with emphasis on:
1.Introduction, overview of governing equations of elasticity, tensor notation, and averaging
2.Minimum energy principles, material symmetries
3.Elementary theory of overall moduli, concentration factors, Voigt-Reuss bounds
4.Exact solution for two-phase composites, idea of improved bounds
5.Eshelby problem
6.Approximate evaluation of overall moduli: dilute approximation, self-consistent method, Mori-Tanaka method
7.Improved bounds on overall moduli: Hashin-Shtrikman bounds
8.Thermo-elasticity
9.Extension to stationary transport processes
- Requirements:
- Syllabus of lectures:
- Syllabus of tutorials:
- Study Objective:
- Study materials:
-
Povinná literatura:
G. J. Dvorak: Micromechanics of composite materials, Springer, 2013
M. Šejnoha and J. Zeman: Micromechanics in practice, WIT Press, 2013
Doporučená literatura:
T. Mura: Micromechanics of defects in solids. Martinus Nijhoff, Dordrecht, 1987
G. W. Milton: Theory of composites, Cambridge University Press, 2002
L. Dormieux, D. Kondo, F.-J. Ulm: Microporomechanics, John Wiley & Sons, 2006
- Note:
- Time-table for winter semester 2024/2025:
- Time-table is not available yet
- Time-table for summer semester 2024/2025:
- Time-table is not available yet
- The course is a part of the following study plans: