Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2024/2025

Bayesian Machine Learning

The course is not on the list Without time-table
Code Completion Credits Range
D01BSU ZK
Garant předmětu:
Lecturer:
Tutor:
Supervisor:
Department of Mathematics
Synopsis:
Requirements:
Syllabus of lectures:

1.Elementary use of Bayesian statistics.

2.Linear models for prediction, regularization, hierarchical priors.

3.Non-linear models for prediktion, nneural networks, estimation, regularization.

4.Gausian process for prediction, estimation of hyper-parameters, hierarchical Gausian processes.

5.Nelinear generative models, neural architectures of autoencoder type, regularization using Variational Bayes.

6.Dynamical models of sequences, parameter identification, recursive identification.

7.Multi-class classification, supervised and semisupervised learning.

8.Bayesian optimization, selection of stochastic process, hyperparameter selection, acquisition function.

Syllabus of tutorials:
Study Objective:
Study materials:

1.Ch. Bishop: Pattern Recognition and Machine Learning, Springer, 2006.

2.C. E. Rasmussen: Gaussian processes in machine learning, pages 63-71, Springer, Berlin, Heidelberg, 2004.

3.D. P. Kingma, M. Welling: Auto-encoding variational Bayes, arXiv preprint:1312.6114, 2013.

Note:
Further information:
No time-table has been prepared for this course
The course is a part of the following study plans:
Data valid to 2024-05-23
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet5715206.html