Antennas
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
BE2M17ANT | Z,ZK | 6 | 2P+2L | English |
- Vztahy:
- In order to register for the course BE2M17ANT, the student must have registered for the required number of courses in the group BEZBM no later than in the same semester.
- Garant předmětu:
- Lecturer:
- Tutor:
- Supervisor:
- Department of Electromagnetic Field
- Synopsis:
-
Student will get strong knowledge about theory of electromagnetic field radiation and basic principles of antenna design.
Methods of analysis are demonstrated on various types of antennas and their arrays.
Seminars are both theoretical (analytical and numerical calculation using MATLAB and EM simulators CST) and practical (measurement of antenna parameters).
- Requirements:
-
Good knowledge of electromagnetic field theory (electrodynamics), vector analysis and calculus.
Max. two leaves, in case of measurement seminars student has to perform measurement with other group.
Worked reports on antenna measurements are required.
- Syllabus of lectures:
-
1. Transmission lines used for feeding antennas, antenna as a circuit component, equations for radiation of waves
2. Radiation ofo elementary dipole and loop, zones of radiation, directivity, polarization, antenna parameters.
3. Linear (wire) antennas, current distribution, calculation of impedance and radiation, folded dipole.
4. Antenna symmetrization, monopole antennas, antennas for radio transmission, trawelling-wave antennas.
5. Antenna arrays, broadside and endfire antennas, effect of amplitude and phase, radiation pattern of arrays.
6. Reciprocity and Babinet principle, slot antennas and their arrays, microstrip and wideband antennas.
7. Radiation from apertures, equivalent sources, Huygens source, directivity of aperture antennas.
8. Horn antennas, distribution of amplitude and phase of fields in aperture, polarization properties.
9. Reflector antennas, systems off-set, Cassegrain and Gregorian, effective apperture, calculation of radiation.
10. Feeds for reflector antennas, design for low-noise systems, realization of Huygens source.
11. Lenses and radomes, Maxwell, Fresnel, Luneburg and Rotman lens, zoning.
12. Self and mutual impedances, Poynting theorem, stored energy and quality factor of antennas.
13. Theory of characteristic modes for design and analysis of antennas.
14. Radioamateur antennas, peculiar antennas (fractal)
- Syllabus of tutorials:
-
1. Work with decibels, EIRP, matching, Friis equation, equivalent circuit of antenna
2. Calculation of directivity and radiated power
3. Calculation of array of two dipoles, self impedance of antenna
4. Antenna arrays, mutual impedances
5. Numerical modeling in CST
6. Numerical modeling in CST
7. Radiation from apertures
8. Horn antennas, antenna noise
9. Measurement of antennas
10. Measurement of antennas
11. Measurement of antennas
12. Measurement of antennas
13. Check of reports
14.
- Study Objective:
-
To physically understand the function of antenna in transmission chain, to know antenna types, parameters and methods of design.
- Study materials:
-
1. Mazánek, M., Pechač, P., Vokurka, J.: Antény a šíření elektromagnetických vln, skripta ČVUT, Praha, 2007.
2. Kraus, J. D.: Antennas, McGraw-Hill, 1988.
3. Stutzman, W., Thiele, G.: Antenna Theory and Design, Wiley, 2012.
4. Balanis, A. C.: Antenna Theory, Wiley, New York, 1997.
5. Prokop, J., Vokurka, J.: Šíření elektromagnetických vln a antény, SNTL, Praha, 1982.
6. Orfanidis, S.: Electromagnetic Waves and Antennas, online http://www.ece.rutgers.edu/~orfanidi/ewa/
7. Notaros, B. M.: Electromagnetics, Prentice Hall, New Jersey, 2011.
- Note:
- Further information:
- https://moodle.fel.cvut.cz/courses/BE2M17ANT
- No time-table has been prepared for this course
- The course is a part of the following study plans:
-
- Electronics and Communications - Technology of the Internet of Things (compulsory elective course)
- Electronics and Communications - Mobile Communications (compulsory course in the program)
- Electronics and Communications - Radio Systems (compulsory course in the program)