Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2024/2025

Quantum Groups

The course is not on the list Without time-table
Code Completion Credits Range
D01KG ZK 2P
Garant předmětu:
Lecturer:
Tutor:
Supervisor:
Department of Mathematics
Synopsis:

The subject deals with mathematical analysis of integrable model solutions. It introduces students to basic concepts and constructions in quantum groups.

Requirements:
Syllabus of lectures:

1. Rehearsal of Lie algsebra and Lie groups.2. Hopf algebras.3. Classical and quantum Yang-Baxter equation.4. Poisson algebras.5. Drinfeld-Jimbe's formulation of quantum groups.6. Woronowicz formulation of quantum groups.7. Basics of non-commutative geometry.8. Applications in mathematics and mathematical physics.9. Integrative models.

Syllabus of tutorials:
Study Objective:
Study materials:

Key references: [1] A. Klimyk, K. Schmudgen: Quantum Groups and Their Representation, Springer, Berlin, 1997.[2] P. Woit,Quantum Theory, Groups and Representations: An Introduction, Springer, 2017.Recommendedreferences:[3] G. Lustig: Introduction to Quantum Groups, Birkhauser, Boston, 1993.[4] Ch. Kassell: Quantum Groups, Graduate Texts in Mathematics, Springer, New York, 2012.[5] E. Abe: Hopf algebras, Cambridge Tracts in Mathematics, Univ. Press. Cambridge, 2008.[6] J. Dixmier: Enveloping Algebra, North-Holland, Amsterdam, 1997.[7] A. Connes: Non-Commutative Geometry, Academic Press, New York 1994.

Note:
Further information:
No time-table has been prepared for this course
The course is a part of the following study plans:
Data valid to 2024-06-16
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet4562206.html