Microcontrollers
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
BE5B34MIK | Z,ZK | 6 | 2P+2L | English |
- Vztahy:
- In order to register for the course BE5B34MIK, the student must have registered for the required number of courses in the group BEZBM no later than in the same semester.
- Garant předmětu:
- Lecturer:
- Tutor:
- Supervisor:
- Department of Microelectronics
- Synopsis:
-
The goal of this course is to make students acquainted with recent interesting applications, smart sensors circuits and peripherals handled by microcontrollers. In a lab students will program their own application and measure its properties. Because of usage of a programming language C it will be possible to focus on the practical part of the realization.
- Requirements:
- Syllabus of lectures:
-
1. The basic terms of microprocessor techniques and architecture of microcontrollers, input/output settings, LED and push button control.
2. Programming microcontrollers in C language, development environment and its possibilities, time-division multiplexing, seven-segment displays, matrix keyboard.
3. Interrupt control operation, sources, interrupt vectors and priorities, incremental encoders.
4. Graphic, alphanumerical and LED display control touch panels, capacitive touch sensors.
5. Analog signal processing and control, AD and DA converters, voltage references.
6. Software and hardware timing.
7. Smart sensor applications, SPI, I2C, 1-Wire.
8. Instruction set, assembler language, program and data memory, direct and indirect addressing, program run control, pipelining, conditional and unconditional branching.
9. Communication between PC and microcontroller, USART, USB, RS-232, RS-422, RS-485.
10. Processing of measured data, look-up tables, number conversion.
11. Control and regulation of low power motors (DC, stepper and servomotors), capture and compare modules, PWM.
12. GSM and GPS applications, RF identification and wireless sensor data transfer (Bluetooth, ZigBee, WiFi, IR), AT commands.
13. Memory space extension, external memories and memory media.
14. Configuration bits, clock signal sources, software and hardware solution of complex system stability and security, how to program a microcontroller, bootloader.
- Syllabus of tutorials:
-
1. Introduction to the development environment, hardware and software switch debouncing, LED and push button control.
2. Matrix keyboard, seven-segment display, multiplex mode.
3. Interrupt control operation, priorities.
4. Graphic and alphanumerical displays.
5. AD converter applications, analog temperature sensor, DA converter.
6. Analog sensors (resistive touch panel, 3-axis accelerometer).
7. I2C communication (EEPROM, temperature and humidity sensor, proximity sensor).
8. SPI communication (pressure sensor, 3-axis gyroscope, DA convertor).
9. Microcontroller to PC communication (UART, RS232, USB).
10. RS-485 communication.
11. Stepper motors (including micro stepping), servomotors and DC motors applications.
12. RFID applications.
13. Data transfer via Bluetooth, ZigBee and WiFi.
14. GPS and GSM modules data receiving and processing, AT commands.
- Study Objective:
- Study materials:
-
1. Robert B.Reese: Microprocessors From Assembly Language to C Using The PIC18Fxx2, Da Vinci Engineering Press, Hingham Massachusetts 2005
2. Brian W. Kernighan, Dennis M. Ritchie: The C Programming Language, Second Edition, Prentice Hall, Inc., 1988
- Note:
- Further information:
- https://moodle.fel.cvut.cz/course/view.php?id=2154
- No time-table has been prepared for this course
- The course is a part of the following study plans:
-
- Electrical Engineering and Computer Science (EECS) (compulsory course in the program)
- Electrical Engineering and Computer Science (EECS) (compulsory course in the program)