Theory of ICE and Simulation

The course is not on the list Without time-table
Code Completion Credits Range Language
E211173 Z,ZK 5 4P+1C English
Garant předmětu:
Department of Automotive, Combustion Engine and Railway Engineering

Theoretical description of internal combustion engine (ICE) is presented - description of important physical phenomena including their mathematical models.


. Knowledge of thermodynamics, basics of internal combustion engines including turbocharging and cooling.

. Successful completion of exams from Internal Combustion Engines (or equivalent from partner university).

Information on the organisation of the course, special conditions for the award of ungraded assessment, graded assessment or examination and study materials can be found on the study material server https://studium.fs.cvut.cz/studium/u12120/E211173_TICE .

Syllabus of lectures:

. Basic conservation laws - mass, momentum and energy.

. Basics of ICE combustion - laminar/turbulent flame, physical/chemical induction time.

. Application of thermodynamic laws to combustion case - 1st law of thermodynamics, „chemical“ enthalpy and lower heating value of fuel, adiabatic flame temperature. Basics of combustion chemistry - equilibrium, kinetics.

. Chained chemical reactions, chemical mechanism of hydrogen/hydrocarbon, introduction to pollutant production in ICE.

. Combustion in ICE - time evolution (rate of heat release), different combustion systems (SI, CI, HCCI, CAI, PCI, etc).

. In-cylinder turbulence and its influence on in-cylinder transport processes.

. SI engine combustion - rate of heat release (ROHR), turbulent flame structure, influence of turbulence, thermodynamic analysis (single/multi-zone model), mixture ignition, influence of ROHR on ICE thermodynamic cycle (including cyclic variations), incorrect combustion modes (knocking, incomplete combustion, etc.), limits of stable ICE operation.

. CI engine combustion - high-pressure fuel injection, combustible mixture formation, fuel jet time evolution, fuel drops (size distribution, SMD, time decay, evaporation), fuel jet interaction with walls and with in-cylinder large-scale flow strucutre(s), ROHR, influence on ICE thermodynamic cycle.

. Homogeneous combustion (HCCI), CAI, etc. - general properties, advantages/disadvantages, simplified description.

. Pollutant production in ICE - pollutant formation of general point of view, specifics of different combustion systems (SI, CI, etc.), NOx formation in SI engine (Zeldovich model), CO formation, unburnt hydrocarbons formation, estimate of exhaust gas composition.

. Energy fluxes in ICE - heat transfer (Woschni, Eichelberg), detailed thermodynamic analysis, warm-up of exhaust manifold. Mechanical losses in ICE - mechanical efficiency, simplified models.

. Gas exchange process - 2-sroke/4-stroke ICE, large-scale in-cylinder flow structures, properties of intake/exhaust ports, combustion chamber geometry shape - SI/CI engines.

Syllabus of tutorials:

. Basic training of 0-D/1-D CFD simulation tool (GT-Suite/GT-Power).

Study Objective:
Study materials:

. Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, London, England. 1988. ISBN 0-07-028637-X.

. Wilcox, D. C.: Turbulence Modeling for CFD. DCW Industries, Inc., California, 1993.

. PPT presentation - it contains important equations and diagrams related to main topics - it is located on server https://studium.fs.cvut.cz/studium/u12120/

Further information:
No time-table has been prepared for this course
The course is a part of the following study plans:
Data valid to 2024-05-24
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet3833306.html