Linear Algebra A2
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
01LAA2 | Z,ZK | 6 | 2+2 | Czech |
- Garant předmětu:
- Lecturer:
- Tutor:
- Supervisor:
- Department of Mathematics
- Synopsis:
-
The subject is devoted to the theory of linear operators on vector spaces (mainly equipped with scalar product). In the same time we introduce the corresponding matrix theory.
- Requirements:
-
Having passed the subject LAP.
- Syllabus of lectures:
-
Inverse matrix and operator. Permutation and determinant. Spectral theory (eigenvalue, eigenvector, diagonalization). Hermitian and quadratic forms. Scalar product and orthogonality. Metric geometry. Riesz theorem and adjoint operator.
- Syllabus of tutorials:
-
1. Gauss method of determination of inverse matrix. 2. Different methods of determinant calculation. 3. Evaluation of eigenvalues and eigenvectors, diagonalization. 4. Canonical transformation of a quadratic form, determination of character of the form and signature. 5. Examples of scalar products, Gram-Schmidt orthogonalization, orthonormal basis. 6. Metric geometry -- calculation of distance and angles.
7. Riesz theorem and adjoint operator. Characterization of normal operators and their spectrum.
- Study Objective:
-
Knowledge: Mastering of the concepts of theory of linear operators and matrices, especially in spaces equiped with a scalar product, and applications of linear algebra in metric geometry.
Skills:
Ability to use these findings in further studies not only in mathematical disciplines, but also in physics, economics etc.
- Study materials:
-
Key references:
[1] Linear Algebra with Applications, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,1980
[2] C. W. Curtis : Linear Algebra, An Introductory Approach, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo 1984.
Recommended references:
[3] P. Lancaster : Theory of Matrices, Academic Press, New York, London, 1969.
- Note:
- Further information:
- http://kmlinux.fjfi.cvut.cz/~balkolub/vyuka.html
- No time-table has been prepared for this course
- The course is a part of the following study plans:
-
- BS Matematické inženýrství - Matematické modelování (compulsory course of the specialization)
- BS Matematické inženýrství - Matematická fyzika (compulsory course of the specialization)
- BS Matematické inženýrství - Aplikované matematicko-stochastické metody (compulsory elective course)
- BS Informatická fyzika (compulsory elective course)
- BS Dozimetrie a aplikace ionizujícího záření (compulsory elective course)
- BS Experimentální jaderná a částicová fyzika (compulsory elective course)
- BS Inženýrství pevných látek (compulsory elective course)
- BS Diagnostika materiálů (compulsory elective course)
- BS Fyzika a technika termojaderné fúze (compulsory elective course)
- BS Fyzikální elektronika (compulsory elective course)