Probabilistic Learning Models
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
01PMU | ZK | 2 | 2+0 | Czech |
- Garant předmětu:
- Lecturer:
- Tutor:
- Supervisor:
- Department of Mathematics
- Synopsis:
-
Introduction into the theory PAC learning model, VC-dimension of finite sets, Sauer, Cover and Radon's lemma,
VC-dimension of composed mappings, application of VC-dimension for lower bound of necessary patterns, analysis of
properties of delta rule based learning processes, PAC learning model extensions and PAO learning, Fourier
coefficients search for Boolean functions.
- Requirements:
- Syllabus of lectures:
-
1. PAC learning introduction
2. Concepts and concept classes
3. PAC learning in finite case
4. Vapnik-Chervonenkis dimension (Sauer's lemma, Cover's lemma, Radon's lemma)
5. VC-dimension of finite set systems
6. VC-dimension of union and intersection
7. VC-dimension of linear concepts
8. Application of Cover?s lemma
9. Vapnik-Chervonenkis dimension of composed mapping
10. Pattern complexity and VC-dimension
11. Minimal number of patterns and PAC learning
12. Delta rule learning algorithm
13. Lover bound for maximal steps of delta rule algorithm
14. Polynomial learning and pattern dimension
15. Almost optimal solution of the cover set problem
16. Polynomial learning and conceptual complexity
17. Probabilistic learning algorithms
18. Probabilistic approximation of Fourier expansion
19. Probabilistic search of Fourier coefficients of Boolean functions
20. Probably approximately optimal learning
- Syllabus of tutorials:
- Study Objective:
-
Make the students acquainted with theoretical and mathematical fundamentals of PAC-like learning algorithms.
- Study materials:
-
Key references:
F. Hakl, M. Holeňa. Úvod do teorie neuronových sítí. Ediční středisko ČVUT, Praha, 1997.
Recommended references:
Vwani Roychowdhury, Kai-Yeung Siu, Alon Orlitsky. Theoretical Advances in Neural Computation and Learning. Kluwer
Academic Publishers, 1994.
Martin Anthony and Norman Biggs. Computational Learning Theory. Press
Syndicate of the University of Cambridge, 1992.
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnabil-
ity and the Vapnik-Chervonenkis Dimension. Journal of the Association for
Computing Machinery, 36:929-965, oct 1989.
- Note:
- Further information:
- No time-table has been prepared for this course
- The course is a part of the following study plans:
-
- Matematické inženýrství (elective course)
- Aplikace softwarového inženýrství (elective course)
- Matematická informatika (elective course)