Calculus A2
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
01MAA2 | Z,ZK | 10 | 4+4 | Czech |
- Garant předmětu:
- Lecturer:
- Tutor:
- Supervisor:
- Department of Mathematics
- Synopsis:
-
The subject is devoted mainly to the integral calculus of the real functions with one real variable and to the theory of the number series and the power series.
- Requirements:
-
Succesfull completion of the course Mathematical analysis I, i.e. familiarity with differential calculus.
- Syllabus of lectures:
-
Continuation of differential calculus: Taylor´s Polynomials, Taylor´s formula; Theory of integrals: primitives, definite integral (Riemann definition), techniques of integration and application of integrals; Infinite series: criteria of convergence, operations on series, absolute and conditional convergence, real and complex power series, the Cauchy-Hadamard theorem, expansion of function into power series, summation of infinite series.
- Syllabus of tutorials:
-
Content of excercises consists in solving problems with emphasis on using theoretical results. The domains of problems: evaluation fo limits by the l´Hospital rule, uniform continuity, approximation of function by the Taylor polynomial, technics for determination of primitive functions, evaluation of volumes and areas, expansion of function into a power series
- Study Objective:
-
Acquired knowledge: a rigorous construction of integral, to focus on properties of power series.
Acquired skills: application of the theoretical results in geometry, discrete mathematics and in physics.
- Study materials:
-
Obligatory:
[1] E. Pelantová: Matematická analýza II, skriptum ČVUT, 2007
[2] E.Pelantová, J.Vondráčková: Cvičení z matematické analýzy - Integrální počet a řady, skriptum ČVUT 2006
Optional:
[3] I. Černý, M. Rokyta: Differential and Integral Calculus of One Real Variable, Karolinum, Praha 1998
[4] I.Černý, Úvod do inteligentního kalkulu I, Academia 2005
- Note:
- Further information:
- No time-table has been prepared for this course
- The course is a part of the following study plans:
-
- BS Matematické inženýrství - Matematické modelování (compulsory course of the specialization)
- BS Matematické inženýrství - Matematická fyzika (compulsory course of the specialization)
- BS Matematické inženýrství - Aplikované matematicko-stochastické metody (compulsory elective course)
- BS Informatická fyzika (compulsory elective course)
- BS Dozimetrie a aplikace ionizujícího záření (compulsory elective course)
- BS Experimentální jaderná a částicová fyzika (compulsory elective course)
- BS Inženýrství pevných látek (compulsory elective course)
- BS Diagnostika materiálů (compulsory elective course)
- BS Fyzika a technika termojaderné fúze (compulsory elective course)
- BS Fyzikální elektronika (compulsory elective course)