Logo ČVUT
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2023/2024

Integrální počet

Předmět není vypsán Nerozvrhuje se
Kód Zakončení Kredity Rozsah Jazyk výuky
17PBBITP Z,ZK 5 2P+2C česky
Předmět lze klasifikovat až po klasifikaci předmětů:
Lineární algebra a diferenciální počet (17PBBLAD)
Garant předmětu:
Přednášející:
Cvičící:
Předmět zajišťuje:
katedra přírodovědných oborů
Anotace:

Předmět je úvodem do integrálního počtu a integrálních transformací.

Integrální počet: teoretické poznatky týkající se neurčitého, určitého a nevlastního integrálu včetně výpočetních metod, jednoduché aplikace určitého integrálu pro výpočet obsahu rovinných ploch, objemů a ploch rotačních těles, statických momentů a těžišť i aplikace integrálu při řešení vybraných typů diferenciálních rovnic.

Úvod do integrálních transformací: Laplaceova a zpětná Laplaceova transformace a jejich užití při řešení diferenciálních rovnic, Z transformace a zpětná Z transformace a jejich použití při řešení diferenčních rovnic.

Požadavky:

Podmínky udělení zápočtu:

1. Povinná účast na cvičeních, nejvýše tři řádně omluvené absence.

2. Aktivita na cvičeních. Bude kontrolována minitesty (během semestru celkem 10). Každý minitest bude hodnocen maximálně 5 body. Dva z nejhorších výsledků se nezapočítá do hodnocení. Celkový počet bodů MT z 8 mini testů bude pak maximálně 40 bodů.

3. Úspěšné zvládnutí 2 polo-semestrálních testů v 8. a 14. týdnu výuky.

Každý z těchto testů sestává ze 4 úloh, každá úloha je hodnocena maximálně 5 body (celkem 20 bodů). Z jednotlivého polo-semestrálního testu je nutné získat alespoň 10 bodů. Z obou polo-semestrálních testů musí student získat celkem alespoň 20 bodů.

Celkový počet bodů VT bude v rozmezí 20 až 40 bodů.

Hodnocení studenta ze cvičení, které bude započítáno k bodům ze zkoušky:

MT/8 + VT/4 = v rozmezí od 5 do 15 bodů.

Zkouška:

Podmínkou k vykonání zkoušky je udělený zápočet, zapsaný spolu s počtem

Zkouška sestává ze:

a) 6 úloh, hodnocených po 10 bodech, tedy celkem maximálně 60 bodů.

b) Příklady

5 testů hodnocený1 bodem a 5 testů hodnocených 2 body, celkem maximálně 15 bodů.

c) Teorie:

8 až 10 teoretických úloh s celkovým hodnocením celkem maximálně 10 bodů

d) Body ze cvičení celkem celkem maximálně 15 bodů.

Tedy maximálně 100 bodů.

Stupnice známek:

A: 90-100, B: 80-89, C: 70-79, D: 60-69, E: 50-59,

F: méně než 50.

Ukázkové polo-semestrální testy budou s časovým předstihem zveřejněny na web stránkách předmětu v sekci Ostatní.

Osnova přednášek:

1. Primitivní funkce - neurčitý integrál, vlastnosti, metody výpočtu.

2. Integrování racionálních funkcí - rozklad na parciální zlomky.

3. Integrování goniometrických funkcí.

4. Určitý (Riemannův) integrál, Newton - Leibnitzův vzorec, aplikace.

5. Nevlastní integrál vlivem funkce, vlivem meze.

6. Dvojný integrál, metody výpočtu.Jakobián a substituce v dvojném integrálu, polární souřadnice.

7. Aplikace dvojného integrálu.

8. Obyčejné diferenciální rovnice (ODR) 1. řádu, formulace úloh pro ODR.

9. Řešení ODR 1. řádu se separovanými proměnnými.

10. Homogenní ODR, lineární ODR a metoda variace konstanty.

11. Laplaceova transformace a zpětná Laplaceova transformace.

12. Užití Laplaceovy transformace pro řešení počáteční úlohy pro ODR n. tého řádu.

13. Z-transformace.

14. Užití Z-transformace pro řešení diferenčních rovnic.

Osnova cvičení:

1. Řešení příkladů na neurčitý integrál, metody výpočtu per-partes a substituce.

2. Integrování racionálních funkcí - rozklad na parciální zlomky.

3. Integrování goniometrických funkcí.

4. Řešení příkladů na určitý (Riemannův) integrál, Newton - Leibnitzův vzorec, aplikace určitého integrálu (výpočet obsahu, povrchu, délky křivky).

5. Příklady na výpočet nevlastního integrálu vlivem funkce a vlivem meze.

6. Řešení dvojného integrálu, metody výpočtu.Jakobián a substituce v dvojném integrálu, transformace do polárních souřadnic.

7. Aplikace dvojného integrálu - výpočty momentů setrvačnosti a těžiště.

8. Obyčejné diferenciální rovnice (ODR) 1. řádu, formulace úloh pro ODR.

9. Řešení ODR 1. řádu se separovanými proměnnými - metoda separace proměnných.

10. Příklady na řešení homogenní ODR, lineární ODR a metoda variace konstanty pro ODR 1. řádu.

11. Procvičování příkladů na Laplaceovu transformaci a zpětnou Laplaceovu transformaci na základě slovníku.

12. Příklady na užití Laplaceovy transformace pro řešení počáteční úlohy pro ODR n-tého řádu.

13. Příklady na Z-transformaci.

14. Příklady na užití Z-transformace pro řešení diferenčních rovnic.

Cíle studia:

Cílem předmětu je získání vědomostí a praktických dovedností v základech integrálního počtu a integrálních transformací, zejména Laplaceovou a Z transformací a jejich využitím při řešení diferenciálních a diferenčních rovnic.

Studijní materiály:

[1] Tkadlec J.: Diferenciální a integrální počet funkcí jedné proměnné, skriptum ČVUT, 2004

[2] Tkadlec J.: Diferenciální rovnice, Laplaceova transformace, skriptum ČVUT, 2005

[3] Hamhalter J., Tyšer J.: Integrální počet funkcí více proměnných, skriptum ČVUT, 2005

[4] Neustupa J., Kračmar, S.: Sbírka příkladů z Matematiky I., skriptum FS ČVUT

[5] Neustupa J.: Matematika I, skriptum FS ČVUT

[6] http://math.feld.cvut.cz/mt/index.htm

[7] http://math.fme.vutbr.cz

[8] http://www.studopory.vsb.cz

[9] http://dagles.klenot.cz/rihova

Poznámka:
Další informace:
Pro tento předmět se rozvrh nepřipravuje
Předmět je součástí následujících studijních plánů:
Platnost dat k 30. 8. 2023
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/cs/predmet2165806.html