Robotics
Kód | Zakončení | Kredity | Rozsah | Jazyk výuky |
---|---|---|---|---|
AE3B33ROB | Z,ZK | 6 | 2P+2L | anglicky |
- Vztahy:
- Předmět AE3B33ROB může při kontrole studijních plánů nahradit předmět A3B33ROB
- Předmět AE3B33ROB nesmí být zapsán, je-li v témže semestru zapsán anebo již dříve absolvován předmět A3B33ROB (vztah je symetrický)
- Předmět AE3B33ROB může při kontrole studijních plánů nahradit předmět X33ROB
- Předmět AE3B33ROB nesmí být zapsán, je-li v témže semestru zapsán anebo již dříve absolvován předmět A3B33ROB (vztah je symetrický)
- Garant předmětu:
- Přednášející:
- Cvičící:
- Předmět zajišťuje:
- katedra kybernetiky
- Anotace:
-
The course introduces a robotics as an integrating discipline designing and exploring machines with high degree of flexibility and autonomy. Broader context of robotics is presented first and then kinematics and statics of robots is studied in the detail.
Výsledek studentské ankety předmětu je zde: http://www.fel.cvut.cz/anketa/aktualni/courses/AE3B33ROB
- Požadavky:
-
Delivery of all home assignments,^
delivery of final report of practical assignment,
demonstration of function of practical assignment.
More on:
- Osnova přednášek:
-
1. Robotics, industrial robot and application areas.
2. Geometry in robotics, terminology, number of degrees of freedom (DOF), structure of the manipulator.
3. Coordinate systems, transformation of coordinates.
4. Kinematics of a serial and paralel robot, joint and Cartesian coordinates, direct and inverse kinematics problems.
5. Representation of rotation and translation in the space.
6. Denavit-Hartenberg convention.
7. Inverse kinematics problem and its solution for the robot with 6 DOF and spherical joint.
8. Differential kinematics. Jacobian of the manipulator.
9. Statics of the robot.
10. Singular states of the robot.
11. Precision and repeatibility of a robot.
12. Actuators and sensors of robots.
13. Analysis of a robotic problem and its solution with a robot.
14. Description and calibration of a mechanical system with complex geometry.
- Osnova cvičení:
-
1. Introduction to laboratory assignments, MATLAB, a-test.
2. Correction of the a-test. MATLAB. Assignment 1: Transformations between Cartesian, cylindrical and spherical coordinates.
3. Transformations of coordinates while migrating between coordinate systems. Assignment 2: Transformation of the Cartesian coordinates.
4. Test 1: Transformation of Cartesian coordinates. Assignment 3: Problem on a real robot.
5. Assignment 4: Direct and inverse kinematics of a planar manipulator.
6. Description of a spatial manipulator in Denavit-Hartenberg notation. Assigment 5: Transformation between Euler angles and the rotation matrix.
7. Test 2: Denavit-Hartenberg notation, solution to direct and inverse kinematics problem for the manipulator with 3 DOFs. Assinment 6: Direct and inverse kinematics problem for the manipulator with 3 DOFs.
8. Solution to direct and inverse kinematics problem for a manipulator with 6 DOFs. Assignment 7: Direct and inverse kinematics problem for a manipulator with 6 DOFs.
9. Solving of the Assignment 3 on a real robot.
10. Solving of the Assignment 3 on a real robot in the open lab.
11. Solving of the Assignment 3 on a real robot in the open lab.
12. Solving of the Assignment 3 on a real robot in the open lab.
13. Solving of the Assignment 3 on a real robot in the open lab.
14. Solving of the Assignment 3 on a real robot in the open lab.
- Cíle studia:
-
The goal of the course is to introduce industrial robots and manipulators, their design, kinematics, statics, and control. The course is designed for future experts who will be able to control robot, design its electronics, and consult kinematical design. The ability to implement
geometry of the robot in programming language is emphasized.
- Studijní materiály:
-
H. Asada, J.-J. E. Slotine: Robot Analysis and Control. Wiley-Interscience, 1986.
- Poznámka:
-
Rozsah výuky v kombinované formě studia: 14p+6c
- Další informace:
- http://cw.felk.cvut.cz/doku.php/courses/ae3b33rob/start
- Pro tento předmět se rozvrh nepřipravuje
- Předmět je součástí následujících studijních plánů: