Algoritmy a struktury neuropočítačů
Kód | Zakončení | Kredity | Rozsah | Jazyk výuky |
---|---|---|---|---|
AD0M31ASN | Z,ZK | 5 | 14KP+6KC | česky |
- Garant předmětu:
- Přednášející:
- Cvičící:
- Předmět zajišťuje:
- katedra teorie obvodů
- Anotace:
-
Cílem předmětu je seznámení se základními principy a možností aplikací neuronové informační technologie při zpracování signálů. Pozornost je věnována úvodu do teorie umělých neuronových sítí a jejich aplikacím, optimalizaci struktury, výběru dat, otázce klasifikace. Podrobněji budou probírány otázky zpracování řečového signálu a aplikace umělých neuronových sítí při analýze, rozpoznávání a syntéze řeči. Látka je rozšířena o některé aplikace umělých neuronových sítí v biomedicínském inženýrství. Jsou to aplikace související se zpracováním EEG a EKG, ale také otázky související s možnostmi aplikací UNS v rehabilitačním lékařství. Další rozšíření se týká základů realizací umělých neuronových sítí.
Výsledek studentské ankety předmětu je zde: http://www.fel.cvut.cz/anketa/aktualni/courses/A0M31ASN
- Požadavky:
-
Jsou požadovány základní znalosti ze zpracování řečového a obrazového signálu, MATLAB, aplikace počtu pravděpodobnosti a statistiky. Podmínkou zápočtu je aktivní účast na cvičeních a vypracování samostatné úlohy. Více na http://amber.feld.cvut.cz/SSC.
- Osnova přednášek:
-
1. Neuronové sítě - historie, biologické a umělé NS, jejich využití pro zpracování
signálů. Modely neuronu, aktivační funkce.
2. Topologie, principy učení umělých neuronových sítí. Samoorganizující se sítě (SOM), Kohonenovy mapy
(KSOM).
3. SOM, SOM s učitelem, vizualizace map (U-mapy), LVQ klasifikátor.
4. Vícevrstvé sítě - dopředné a Elmanovy, MLNN s učením zpětného šíření chyby (BPG).
5. Základní učení BPG a jeho modifikace.
6. Hluboké neuronové sítě (Deep neural networks).
7. Optimalizace struktury, Metody Data Mining, klestění neuronové sítě, výběr vstupních dat.
8. Učení SVM (Support Vector Machine).
9. UNS a úlohy predikce a klasifikace.
10. Aplikace UNS při zpracování řeči a analýze emocí. Základní pojmy z fonetiky, charakteristiky mluvené
řeči, charakteristické vlastnosti patologické řeči.
11. Syntezátory řeči. Rozpoznání obrazu.
12. Aplikace UNS v neurologii, rehabilitačním lékařství a ve vybraných dalších odvětvích medicíny.
13. Speciální struktury UNS, fuzzy-neuronové sítě, genetické algoritmy.
14. Realizace umělých neuronových sítí. Neuropočítače. Ostatní aplikace neuronových sítí.
- Osnova cvičení:
-
1. Úvod, základy NN-Toolboxu pro MATLAB, informace o samostatných úlohách.
2. Základní funkce UNS, perceptron, ADALINE, MADALINE, LMS pravidlo.
3. Samoorganizující se sítě, SOM s učitelem, U-matice. NN Toolbox, MATLAB.
4. Kohonenovy mapy - SOM Toolbox.. LVQ algoritmy - NN Toolbox, MATLAB.
5. Vrstevnaté neuronové sítě. Zadání samostatných úloh.
6. Algoritmy modifikovaného učení BPG.
7. Hluboké neuronové sítě.
8. Experimenty s programovým systémem Speech Laboratory. Práce na samostatné úloze.
9. Odevzdání a prezentace tezí samostatné úlohy - kontrola.
10. Optimalizace neuronové sítě klestěním. Práce na samostatné úloze.
11. Experimentování s parametry neuronové sítě. Práce na samostatné úloze.
12. Experimenty s programovým systémem SOM Toolbox. Práce na samostatné úloze.
13. Práce na samostatné úloze.
14. Odevzdání samostatné úlohy, zápočet.
- Cíle studia:
-
V počítačově seminárních cvičeních studenti získají praktické zkušenosti s používáním MATLABu, a to Neural Network Toolboxu, a originálního softwaru vytvořeného na katedře v pracovní skupině LANNA, který se týká aplikací MLNN, SOM a jejich variant. Naší snahou je umožnit studentům seznámit se s perspektivními tematickými oblastmi běžnými v zahraničí a pomoci orientovat se budoucím diplomantům v dalších možných tématech diplomových prací z oblasti zpracování signálů za pomoci neuronových sítí, zejména na analýzu, rozpoznání, syntézu řeči (normální i patologické) a na analýzu emocí.
- Studijní materiály:
-
1. Tučková, J.: Vybrané aplikace umělých neuronových sítí při zpracování signálů. Monografie, ČVUT v Praze, Česká technika-nakladatelství ČVUT, 2009, ISBN 976-80-01-04229-8
2. Tučková, J.: Úvod do teorie a aplikací umělých neuronových sítí. Skripta FEL ČVUT v Praze, vydavatelství ČVUT, 2005, ISBN 80-01-02800-3.
3. Tučková, J., Bártů, M., Zetocha, P.: Aplikace umělých neuronových sítí při zpracování signálů.Skripta ČVUT v Praze, 2009, ISBN 978-80-01-04400-1.
4. Novák, M. a kol.: Umělé neuronové sítě, teorie a aplikace. C.H.Beck, Praha 1998, ISBN 80-7179-732-6.
5. Knihovna SOM Toolbox 2.0. www.cis.hut.fi/projects/somtoolbox/download.
6. Šnorek, M. Jiřina, M.: Neuronové sítě a neuropočítače. Skripta ČVUT, Praha 1996.
7. Uhlíř, J., Sovka, P.: Číslicové zpracování signálů. Monografie ČVUT, Praha 1995.
- Poznámka:
-
Rozsah výuky v kombinované formě studia: 14p+6c
- Další informace:
- http://amber.feld.cvut.cz/ssc
- Pro tento předmět se rozvrh nepřipravuje
- Předmět je součástí následujících studijních plánů: