Matematika I.
Kód | Zakončení | Kredity | Rozsah | Jazyk výuky |
---|---|---|---|---|
2011091 | Z,ZK | 7 | 4P+4C+0L | česky |
- Garant předmětu:
- Gejza Dohnal
- Přednášející:
- Luděk Beneš, Tomáš Bodnár, Marta Čertíková, Gejza Dohnal, Lukáš Hájek, Jan Halama, Marta Hlavová, Jiří Holman, Vladimír Hric, Jan Karel, Radka Keslerová, Milana Kittlerová, Matěj Klíma, Petr Louda, Olga Majlingová, Josef Musil, Tomáš Neustupa, Nikola Pajerová, Vladimír Prokop, Hynek Řezníček, David Trdlička, Jan Valášek
- Cvičící:
- Luděk Beneš, Tomáš Bodnár, Marta Čertíková, Gejza Dohnal, Lukáš Hájek, Jan Halama, Martin Hanek, Marta Hlavová, Jiří Holman, Vladimír Hric, Jan Karel, Radka Keslerová, Milana Kittlerová, Matěj Klíma, Petr Louda, Olga Majlingová, Josef Musil, Tomáš Neustupa, Nikola Pajerová, Vladimír Prokop, Hynek Řezníček, David Trdlička, Jan Valášek
- Předmět zajišťuje:
- ústav technické matematiky
- Anotace:
-
V předmětu je kladen větší důraz na teoretický základ probíraných pojmů a na odvozování základních vztahů a souvislostí mezi pojmy. Studenti též poznají postupy řešení úloh s parametrickým zadáním. Navíc studenti získají rozšířené znalosti v některých tematických okruzích: vlastní čísla a vlastní vektory matice, Taylorův polynom, integrál jako funkce meze, integrace některých speciálních funkcí.
- Požadavky:
-
Znalost středoškolské matematiky v rozsahu reálného gymnázia.
- Osnova přednášek:
-
1. Základy lineární algebry – vektory, vektorové prostory, lineární závislost a nezávislost vektorů, dimenze, báze.
2. Matice, operace, hodnost. Determinant. Regulární a singulární matice, inverzní matice.
3. Soustavy lineárních rovnic, Frobeniova věta, Gaussova eliminační metoda.
4. Vlastní čísla a vlastní vektory matice.
5. Diferenciální počet funkcí jedné proměnné. Posloupnost, monotonie, limita.
6. Limita a spojitost funkce. Derivace, geometrický a fyzikální význam.
7. Monotonie funkce, lokální a absolutní extrémy, konvexnost, inflexní bod. Asymptoty, vyšetření průběhu funkce, graf funkce.
8. Taylorův polynom, zbytek po n–té mocnině. Přibližné řešení rovnice f(x)=0.
9. Integrální počet funkcí jedné proměnné – neurčitý integrál, integrace per–partes, integrace substitucí.
10. Určitý integrál, jeho výpočet.
11. Aplikace určitého integrálu: obsah plochy, objem rotačního tělesa, délka křivky, aplikace v mechanice.
12. Numerický výpočet integrálu.
13. Nevlastní integrál.
- Osnova cvičení:
-
Stejná jako u přednášek.
- Cíle studia:
-
Získat porozumění základním matematickým pojmům a metodám a umět je aplikovat v dalších odborných předmětech.
- Studijní materiály:
-
J.Neustupa: Matematika I. Skriptum FS, Vydavatelství ČVUT, Praha 2005
J.Neustupa, S.Kračmar: Sbírka příkladů z Matematiky I. Skriptum FS, Vydavatelství ČVUT, Praha 2006.
E.Brožíková, M.Kittlerová: Diferenciální počet funkcí jedné proměnné. Řešené příklady. Skriptum FS, Vydavatelství ČVUT, Praha 2004.
E.Brožíková, M.Kittlerová: Neurčitý integrál. Řešené příklady. Skriptum FS, Vydavatelství ČVUT, Praha 2004.
E.Brožíková, M.Kittlerová: Lineární algebra a analytická geometrie. Skriptum FS, Vydavatelství ČVUT, Praha 2004.
- Poznámka:
- Další informace:
- https://mat.nipax.cz/mati
- Rozvrh na zimní semestr 2024/2025:
-
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Po Út St Čt Pá - Rozvrh na letní semestr 2024/2025:
- Rozvrh není připraven
- Předmět je součástí následujících studijních plánů: