Design for the FPGA and ASIC Technology
Kód | Zakončení | Kredity | Rozsah | Jazyk výuky |
---|---|---|---|---|
MIE-NFA.16 | Z,ZK | 5 | 2P+1C | anglicky |
- Garant předmětu:
- Přednášející:
- Cvičící:
- Předmět zajišťuje:
- katedra číslicového návrhu
- Anotace:
-
Students gain the basic knowledge needed to start a career in a design house. They will understand the FPGA and ASIC implementation technologies and the limitations that the technologies impose on the design. They are able to perform and to manage typical workflows, their analytic and synthetic steps, with an emphasis on basic verification. They know the structure and demands of software tools, as well as what to expect from them.
- Požadavky:
-
Gates and registers, basic CMOS circuits, simple gate-level design, finite state machine and its synchronous implementation.
- Osnova přednášek:
-
1. The gist of hardware design. The role and types of decomposition. Synthetic and analytic steps. Basic economy of product design and manufacturing.
2. CMOS circuits, dynamic behavior, power consumption. Technology characterization. Implementation of programmable combinational function and programmable interconnect.
3. Synchronous digital design, timing, models. Clock domains, signal transfer across clock domain boundary. Metastablility.
4. Top-down and bottom-up design process, its steps and iteration loops. Hardware project management, metrics. Intellectual property cores. Reuse methodology.
5. Programmable devices: overview, usage, programming methods. Deployment.
6. FPGA devices: architecture, basic logic blocks, interconnect. Dynamic behavior.
7. FPGA devices: blocks performing computation and communication, memory blocks.
8. Design styles for ASICs. The impact of deep submicron technologies. ASIC design tools.
9. Verification techniques: formal techniques (model checking, equivalence checking), advanced simulation, assertions, hybrid assertion-based techniques.
10. Physical design: routing, placement, technology mapping.
11. Logic synthesis, basic phases, used formalisms. Timing-driven and power-driven synthesis.
12. Behavioral synthesis, areas of use.
13. System-level design, hardware-software decomposition and codesign, design by model refinement.
- Osnova cvičení:
-
1. Lab: getting started with equipment, software and kits
2. Lab: synchronous FPGA design
3. Lab: synchronous FPGA design
4. Lab: FPGA design with multiple clock domains
5. Lab: FPGA design with multiple clock domains
6. Lab: FPGA design with multiple clock domains
7. Lab: FPGA design with given speed and external timing
8. Lab: FPGA design with given speed and external timing
9. Lab: FPGA design with given speed and external timing
10. Lab: verification
11. Lab: verification
12. Lab: verification
13. Lab: verification
14. Presentation of results, evaluation
- Cíle studia:
-
The module builds a bridge from the basic digital design, which students have learned earlier, to the level where the students will understand professional designers. They will gain insight into the interplay between technology, software tools, workflow, and the quality of the result.
- Studijní materiály:
-
1. Wilson, P. ''Design Recipes for FPGAs''. Newnes, 2007. ISBN 0750668458.
- Poznámka:
-
Information about the course and courseware are available at https://courses.fit.cvut.cz/MI-NFA/
- Další informace:
- https://courses.fit.cvut.cz/MI-NFA/
- Pro tento předmět se rozvrh nepřipravuje
- Předmět je součástí následujících studijních plánů: