Logo ČVUT
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2024/2025

Metoda konečných prvků v aplikacích

Předmět není vypsán Nerozvrhuje se
Kód Zakončení Kredity Rozsah Jazyk výuky
2011069 ZK 4 2P+0C česky
Garant předmětu:
Přednášející:
Cvičící:
Předmět zajišťuje:
ústav technické matematiky
Anotace:

Matematická teorie metody konečných prvků. Vektorový, Banachův a Hilbertův prostor. Metrika, norma, lineární forma, bilineární forma, skalární součin. Holderova a Cauchyho nerovnost. Lax-Milgramova věta. L2 a Lp prostory, oblast se spojitou hranicí, s Lipschitzovsky spojitou hranicí. Prostory H1 a Wkp. Věty o vnoření, věty o stopách, nerovnost Poincare-Friedrichsova. Greenova věta. Věta o substituci. Duální prostor, reflexivita.

Základní princip metody konečných prvků. Ukázka použití v jednorozměrné eliptické úloze. Souvislost slabého a klasického řešení. Odhady chyb. Abstraktní variační formulace. Ritzova formulace. Galerkinova formulace. Věta o ekvivalenci. Existence a jednoznačnost řešení. Diskrétní Ritzova a Galerkinova formulace. Existence diskrétního řešení (vlastnosti matice tuhosti). Abstraktní odhad chyby.

Požadavky:
Osnova přednášek:

Matematická teorie metody konečných prvků. Vektorový, Banachův a Hilbertův prostor. Metrika, norma, lineární forma, bilineární forma, skalární součin. Holderova a Cauchyho nerovnost. Lax-Milgramova věta. L2 a Lp prostory, oblast se spojitou hranicí, s Lipschitzovsky spojitou hranicí. Prostory H1 a Wkp. Věty o vnoření, věty o stopách, nerovnost Poincare-Friedrichsova. Greenova věta. Věta o substituci. Duální prostor, reflexivita.

Základní princip metody konečných prvků. Ukázka použití v jednorozměrné eliptické úloze. Souvislost slabého a klasického řešení. Odhady chyb. Abstraktní variační formulace. Ritzova formulace. Galerkinova formulace. Věta o ekvivalenci. Existence a jednoznačnost řešení. Diskrétní Ritzova a Galerkinova formulace. Existence diskrétního řešení (vlastnosti matice tuhosti). Abstraktní odhad chyby.

Aplikace MKP na dvourozměrnou úlohu: Dirichletova úloha s homogenní okrajovou podmínkou. Slabá formulace. Řešení na jednoduché oblasti pomocí lineárních konečných prvků. Výpočet a sestavení matice tuhosti. Slabá formulace 2D problémů s různými okrajovými podmínkami: Dirichletovy, Neumannovy okr. podmínky. Vlastnosti slabé formulace. Konstrukce prostoru konečných prvků a volba báze. Matice tuhosti prvku a globální matice tuhosti; podstata algoritmizace, zobrazení na referenční trojúhelník, sestavení globální matice tuhosti.

Řešení diskrétní úlohy - soustavy lineárních rovnic. Přímé metody. Iterační metody. Gradientní metody. Předpodmiňování.

Aplikace metody konečných prvků: rovnice vedení tepla, vlnová rovnice, problém konvekce-difuze, lineární problém pružnosti, Stokesův problém a Navierovy-Stokesovy rovnice.

Osnova cvičení:
Cíle studia:

Matematická teorie metody konečných prvků. Vektorový, Banachův a Hilbertův prostor. Metrika, norma, lineární forma, bilineární forma, skalární součin. Holderova a Cauchyho nerovnost. Lax-Milgramova věta. L2 a Lp prostory, oblast se spojitou hranicí, s Lipschitzovsky spojitou hranicí. Prostory H1 a Wkp. Věty o vnoření, věty o stopách, nerovnost Poincare-Friedrichsova. Greenova věta. Věta o substituci. Duální prostor, reflexivita.

Základní princip metody konečných prvků. Ukázka použití v jednorozměrné eliptické úloze. Souvislost slabého a klasického řešení. Odhady chyb. Abstraktní variační formulace. Ritzova formulace. Galerkinova formulace. Věta o ekvivalenci. Existence a jednoznačnost řešení. Diskrétní Ritzova a Galerkinova formulace. Existence diskrétního řešení (vlastnosti matice tuhosti). Abstraktní odhad chyby.

Studijní materiály:

[0] http://marian.fsik.cvut.cz/~svacek/fem/index.html

[1] P. Sváček and M. Feistauer. Metoda konečných prvků. Vydavatelství ČVUT, Praha, 2006.

[2] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, 1992.

[3] K. Rektorys. Variační metody. Academia, Prague, 1999

[4] E. Vitásek. Základy teorie numerických metod pro řešení diferenciálních rovnic. Academia, Prague, 1994

[5] K. Rektorys. Variational Methods in Mathematics, Science and Engineering. Reidel, Dordrecht, Holland, 1980

[6] P. G. Ciarlet. The Finite Element Methods for Elliptic Problems. North-Holland Publishing, 1979

Poznámka:
Další informace:
http://marian.fsik.cvut.cz/~svacek/fem/
Pro tento předmět se rozvrh nepřipravuje
Předmět je součástí následujících studijních plánů:
Platnost dat k 21. 11. 2024
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/cs/predmet1898606.html