Zobecněné lineární modely a aplikace
Kód | Zakončení | Kredity | Rozsah | Jazyk výuky |
---|---|---|---|---|
01ZLIM | ZK | 3 | 2+1 | česky |
- Garant předmětu:
- Přednášející:
- Cvičící:
- Předmět zajišťuje:
- katedra matematiky
- Anotace:
-
V tomto předmětu se budeme zabývat řadou statistický modelů, které zobecňují klasický lineární model s normálně rozdělenou sledovanou proměnnou. Přednáška se skládá z teorie zobecněných lineárních modelů (ZLM), popisu algoritmů používaných pro odhadování parametrů ZLM a praktických návodů jak určit, který algoritmus použít pro analýzu daného souboru dat.
- Požadavky:
-
Základní kurzy matematické analýzy a pravděpodobnosti (dle přednášek na FJFI ČVUT v Praze 01MAB3, 01MAB4 a 01PRST).
- Osnova přednášek:
-
1. Zobecněné lineární modely: exponenciální rodina, podmínky regularity, skórová funkce.
2. Odhadování parametrů modelů: maximálně věrohodné odhady, numerické metody výpočtu: metoda Newton-Raphson, metoda Fisher-scoring.
3. Testování modelů: asymptotické rozdělení skórové funkce a maximálně věrohodných odhadů, porovnávání modelů, analýza reziduí.
4. Analýza kovariance (ANCOVA): základy maticové algebry, obecný model analýzy kovariance, ANCOVA s jedním faktorem.
5. Modely pro binární data: rovnoměrný model, logistický model, normální model, Gumbelův model.
6. Poissonovská regrese: Poissonovo rozdělení, jednorozměrná a vícerozměrná poissonovská regrese, testy a rezidua, Poissonův model pro odhadování v malých oblastech.
7. Vícerozměrná logistická regrese: vícerozměrný logit model, testování o odhadech parametrů, rezidua, logit model oblasti.
- Osnova cvičení:
-
1. Odhadování parametrů modelů, maximálně věrohodné odhady, numerické metody výpočtu, metoda Newton-Raphson, metoda Fisher-scoring.
2. Testování modelů, porovnávání modelů, analýza reziduí.
3. Analýza kovariance (ANCOVA).
4. Logistická regrese.
5. Poissonovská regrese.
6. Vícerozměrná logistická regrese.
- Cíle studia:
-
Znalosti:
Zobecněněné lineární statistické modely a metody pro odhadování jejich parametrů.
Schopnosti:
Aplikovat teoreticky probrané metody na konkrétní praktické problémy analýzy dat, včetně použití těchto metod na počítači v prostředí MATLAB případně R.
- Studijní materiály:
-
Povinná literatura:
[1] A.J. Dobson: An Introduction to Generalized Linear Models. London: Chapman and Hall, 1990.
Doporučená literatura:
[2] J.K. Lindsey: Applying Generalized Linear Models. Springer Verlag, 1998.
- Poznámka:
- Další informace:
- Pro tento předmět se rozvrh nepřipravuje
- Předmět je součástí následujících studijních plánů: