Problems and Algorithms
Kód | Zakončení | Kredity | Rozsah | Jazyk výuky |
---|---|---|---|---|
MIE-PAA | Z,ZK | 5 | 2P+1R+1C | anglicky |
- Garant předmětu:
- Přednášející:
- Cvičící:
- Předmět zajišťuje:
- katedra číslicového návrhu
- Anotace:
-
Students are able to evaluate discrete problems by complexity and by the purpose of optimisation (on-line tasks, multicriterial optimisation). They understand principles and properties of heuristics and exact algorithms and, therefore, are able to select, apply, and experimentally evaluate a suitable heuristics for a practical problem.
- Požadavky:
-
The notion of complexity, asymptotic complexity bounds. Basic graph theory. Programming in any imperative language using queues, stacks, and lists.
- Osnova přednášek:
-
1. Combinatorial problems and and algorithms, complexity
2. P and NP classes, polynomial hierarchy of problems
3. NPC and NPH problems, Karp reduction, Turing reduction
4. PO, NPO classes, approximation algorithms, classes APX, PTAS, FPTAS
5. Communication and circuit complexity
6. Randomized algorithms. Experimental evaluation
7. Local methods. State space. Simple local heuristics
8. Simulated annealing
9. Simulated evolution - genetic algorithms
10. Simulated evolution - genetic programming
11. Tabu Search
12. Global methods
- Osnova cvičení:
-
1. Introduction, the Knapsack problem
2. Examples of problems, configuration variables
3. Consultation
4. Dynamic programming
5. Consultation
6. Consultation
7. Problem classes P, NP, NPC, NPH
8. Consultation
9. Mid-term test
10. State space
11. Advanced iterative algorithms
12. Consultation
13. Corrective test, assessment
- Cíle studia:
-
Many practical tasks are computationally infeasible. Students will learn to distinguish tasks where the complexity grows too fast with the task size from those which are undecidable independently of size. They will learn fast algorithms for exact and, primarily, approximate solution. Some of the more advanced ones are inspired by processes in nature and sometimes referred to as softcomputing. A series of homeworks will lead students from very simple tasks to applications of advanced heuristics on a practical problem.
- Studijní materiály:
-
1. Garey, M. R., Johnson, D. S. ''Computers and Intractability: A Guide to the Theory of NP-Completeness''. W. H. Freeman, 1979. ISBN 0716710455.
2. Ausiello, G., Crescenzi, P., Kann, V., Gambosi, G., Spaccamela, A. M. ''Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties''. Springer, 2003. ISBN 3540654313.
- Poznámka:
-
Information about the course and courseware are available at https://moodle-vyuka.cvut.cz/course/view.php?id=3920
- Další informace:
- https://moodle-vyuka.cvut.cz/course/view.php?id=3920
- Pro tento předmět se rozvrh nepřipravuje
- Předmět je součástí následujících studijních plánů: