Parciální diferenciální rovnice
Kód | Zakončení | Kredity | Rozsah |
---|---|---|---|
W01T003 | ZK | 4P+0C |
- Garant předmětu:
- Přednášející:
- Cvičící:
- Předmět zajišťuje:
- ústav technické matematiky
- Anotace:
-
Principy matematického modelování pomocí parciálních diferenciálních rovnic (PDR) a základy klasické a moderní teorie PDR. Moderní teorie je ilustrována na PDR 2. řádu eliptického typu a na PDR, vyskytujících se v matematických modelech užívaných v mechanice tekutin.
- Požadavky:
- Osnova přednášek:
-
1. Principy užití PDR při popisu stavů a procesů v kontinuu. Postup odvození transportní rovnice, rovnice vedení tepla a rovnice kontinuity.
2. Postup odvození Navierových-Stokesových rovnic, vlnové rovnice, Lamého rovnic a Maxwellových rovnic.
3. Užití Laplaceovy a Poissonovy rovnice v matematických modelech.
4. PDR 1. řádu - formulace počáteční nebo okrajové úlohy, princip analytického řešení.
5. Harmonické funkce a jejich vlastnosti (věta o střední hodnotě, princip maxima).
5. Úvod do klasické teorie PDR eliptického typu, Laplaceova a Poissonova rovnice, význam objemového potenciálu, potenciálu jednoduché vrstvy a potenciálu dvouvrstvy.
6. Úvod do klasické teorie PDR parabolického typu, rovnice vedení tepla, princip maxima, Fourierova metoda.
7. Úvod do klasické teorie PDR hyperbolického typu, vlnová rovnice, charakteristiky, oblast závislosti a oblast ovlivnění, Fourierova metoda.
8. Principy moderní teorie PDR. Distribuce a jejich derivace, zobecněná derivace.
9. Lebesgueův prostor L{2} a Sobolevův prostor W{1,2}. Skalární součin a norma v těchto prostorech.
10. Věta o stopách v prostoru W{1,2}. Zobecněná okrajová úloha pro eliptickou rovnici 2. řádu, slabé řešení.
11. Existence a jednoznačnost slabého řešení. Ekvivalence s variační úlohou nalezení minima kvadratického funkcionálu.
12. Galerkinova a Ritzova metoda přibližného řešení.
13. Slabá formulace počáteční-okrajové úlohy pro Navierovy-Stokesovy rovnice. Konstrukce aproximací.
14. Konvergence aproximací, existence slabého řešení, energetická nerovnost.
- Osnova cvičení:
-
1. Principy užití PDR při popisu stavů a procesů v kontinuu. Postup odvození transportní rovnice, rovnice vedení tepla a rovnice kontinuity.
2. Postup odvození Navierových-Stokesových rovnic, vlnové rovnice, Lamého rovnic a Maxwellových rovnic.
3. Užití Laplaceovy a Poissonovy rovnice v matematických modelech.
4. PDR 1. řádu - formulace počáteční nebo okrajové úlohy, princip analytického řešení.
5. Harmonické funkce a jejich vlastnosti (věta o střední hodnotě, princip maxima).
5. Úvod do klasické teorie PDR eliptického typu, Laplaceova a Poissonova rovnice, význam objemového potenciálu, potenciálu jednoduché vrstvy a potenciálu dvouvrstvy.
6. Úvod do klasické teorie PDR parabolického typu, rovnice vedení tepla, princip maxima, Fourierova metoda.
7. Úvod do klasické teorie PDR hyperbolického typu, vlnová rovnice, charakteristiky, oblast závislosti a oblast ovlivnění, Fourierova metoda.
8. Principy moderní teorie PDR. Distribuce a jejich derivace, zobecněná derivace.
9. Lebesgueův prostor L{2} a Sobolevův prostor W{1,2}. Skalární součin a norma v těchto prostorech.
10. Věta o stopách v prostoru W{1,2}. Zobecněná okrajová úloha pro eliptickou rovnici 2. řádu, slabé řešení.
11. Existence a jednoznačnost slabého řešení. Ekvivalence s variační úlohou nalezení minima kvadratického funkcionálu.
12. Galerkinova a Ritzova metoda přibližného řešení.
13. Slabá formulace počáteční-okrajové úlohy pro Navierovy-Stokesovy rovnice. Konstrukce aproximací.
14. Konvergence aproximací, existence slabého řešení, energetická nerovnost.
- Cíle studia:
- Studijní materiály:
-
- J.Fořt, J.Neustupa: Parciální diferenciální rovnice. Skriptum Fakulty strojní, Ediční středisko ČVUT, Praha 2004.
- L.C.Evans: Partial Differential Equations. American Mathematical Society, series „Graduate Studies in Mathematics“, Vol. 19, New York 1997.
- Poznámka:
- Další informace:
- Pro tento předmět se rozvrh nepřipravuje
- Předmět je součástí následujících studijních plánů: