Logo ČVUT
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2024/2025

Mechanika III.

Přihlášení do KOSu pro zápis předmětu Zobrazit rozvrh
Kód Zakončení Kredity Rozsah Jazyk výuky
2311103 Z,ZK 5 2P+3C česky
Garant předmětu:
Tomáš Vampola
Přednášející:
Pavel Bastl, Václav Bauma, Petr Beneš, Ivo Bukovský, Martin Nečas, Zdeněk Neusser, Jan Pelikán, Pavel Steinbauer, Zbyněk Šika, Michael Valášek, Tomáš Vampola, Jan Zavřel
Cvičící:
Pavel Bastl, Václav Bauma, Petr Beneš, Ivo Bukovský, Martin Nečas, Zdeněk Neusser, Jan Pelikán, Pavel Steinbauer, Zbyněk Šika, Michael Valášek, Tomáš Vampola, Jan Zavřel
Předmět zajišťuje:
ústav mechaniky, biomechaniky a mechatroniky
Anotace:

V předmětu je kladen větší důraz na teoretický základ probíraných pojmů a na odvozování základních vztahů a souvislostí mezi pojmy. Navíc studenti získají rozšířené znalosti v některých tematických okruzích se zaměřením na využití v návazných předmětech teoretického základu studia i navazujícího magisterského studia. Cílem předmětu je vládnutí sestavení mechanického a matematického modelu dynamiky mechanické soustavy rovinné i prostorové, metody řešení analytické. Zvládnutí kmitání soustav s 1 a 2 stupni volnosti.

Požadavky:

Při studiu mechaniky je třeba především pochopit požadovanou látku, osvojit si základní pojmy a metody řešení úloh a naučit se je aplikovat při řešení konkrétních příkladů.

Přehled požadované látky:

1. Dynamika soustav hmotných bodů. Použití základních vět dynamiky.

2. Dynamika tělesa. Sestavování pohybových rovnic. Geometrie hmot.

3. d’Alembertovy rovnice. Setrvačné účinky pohybu tělesa. Vyvažovaní rotujících těles.

4. Metoda uvolňování. Newton-Eulerovy rovnice.

5. Dynamika soustav těles. Dresic. Sestavení pohybových rovnic.

6. Princip virtuálních prací a výkonů a jeho použití při analytickém řešení mechanismů.

7. Lagrangeovy rovnice II. druhu a jejich použití pro řešení úloh dynamiky.

8. Metoda redukce a její použití pro řešení úloh dynamiky.

9. Kmitání soustav s 1 stupněm volnosti. Volné kmity.

10. Vynucené kmity soustav s 1 stupněm volnosti buzené harmonickou silou.

11. Vynucené kmity soustav s 1˚volnosti buzené rotující nevyváženou hmotou. Kinematické buzení.

12. Kmitání soustav s 1 stupněm volnosti buzené obecnou periodickou silou nebo silou obecného průběhu.

13. Netlumené kmitavé lineární diskrétní systémy se dvěma a více stupni volnosti. Úprava rovnic do maticového tvaru. Řešení vlastních frekvencí a tvarů vlastních kmitů. Volné kmity.

14. Vynucené netlumené kmitání lineárního diskrétního systému se dvěma a více stupni volnosti.

15. Ohybové kmity, určení kritických otáček.

16. Stabilita pohybu.

17. Elementární teorie rázu hmotných bodů a těles.

18. Přibližná teorie setrvačníků. Gyroskopický moment. Příklady a využití gyroskopický účinků.

Osnova přednášek:

Úvod – ukázka užití v praxi. Modelování. Dynamika soustav hmotných bodů.

Dynamika soustav hmotných bodů. Dynamika tělesa. Geometrie hmot.

d´ Alembertovy rovnice. Setrvačné účinky pohybu těles.

Vyvažování rotujících těles. Metoda uvolňování. Newton–Eulerovy rovnice.

Dynamika soustav těles.

Princip virtuálních prací a výkonů. Lagrangeovy rovnice II. druhu. Metoda redukce.

Metoda redukce. Kmitání soustav s 1 stupněm volnosti. Volné kmity. Vynucené kmity buzené harmonickou silou.

Vynucené kmity vlivem rotující nevyvážené hmoty. Kinematické buzení. Akcelerometr, vibrometr.

Kmitání soustav s 1 stupněm volnosti. Vynucené kmity buzené obecnou periodickou silou nebo silou obecného průběhu. Úvod do nelineárního kmitání.

Kmitání soustav se 2 stupni volnosti, torzní kmitání.

Ohybové kmitání, určení kritických otáček, dynamický hltič.

Stabilita pohybu. Ráz těles.

Přibližná teorie setrvačníků.

Osnova cvičení:

1.Dynamika hmotného bodu. Experimentální určování momentů setrvačnosti.

2. Dynamika soustav hmotných bodů.

3. Geometrie hmot. Dynamika tělesa. Vyvažování rotujících těles.

4. Setrvačné účinky pohybu tělesa. D’Alembertovy rovnice.

5. Metoda uvolňování. Newton-Eulerovy rovnice.

6. Dynamika soustav těles.

7. Princip virtuálních prací a výkonů.

8. Lagrangeovy rovnice II. druhu. Metoda redukce.

9. Kmitání soustav s 1 stupněm volnosti. Volné kmity. Vynucené kmity buzené harmonickou silou.

10. Vynucené kmitání soustav s 1 stupněm volnosti buzené periodickou nebo obecnou silou

11. Torzní kmitání soustav se 2 stupni volnosti. Volné kmity. Vynucené kmity.

12. Ohybové kmitání soustav se 2 stupni volnosti. Určení kritických otáček.

13. Ráz těles. Stabilita pohybu. Přibližná teorie setrvačníků.

Cíle studia:

Cílem předmětu je zvládnutí sestavení mechanického a matematického modelu dynamiky mechanické soustavy rovinné i prostorové a metod analytického řešení. Zvládnutí řešení kmitání soustav s 1 a 2 stupni volnosti.

Studijní materiály:

Valášek M., Stejskal V., Březina J.: Mechanika A, Skriptum FS ČVUT v Praze, Vydavatelství ČVUT, Praha 2002.

Valášek M., Bauma V., Šika Z.: Mechanika B, Skriptum FS ČVUT v Praze, Vydavatelství ČVUT, Praha 2004.

M. Valášek a kol.: Mechanika C, rukopis, ČVUT, Praha 2004 – skripta v přípravě.

V. Stejskal, J. Brousil, S. Stejskal: Mechanika III, Skriptum FS ČVUT v Praze, Vydavatelství ČVUT, Praha 2001.

K. Dedouch, J. Znamenáček, R. Radil: Mechanika III. Sbírka příkladů, Skriptum FS ČVUT v Praze, Vydavatelství ČVUT, Praha 1998.

K. Juliš, R. Brepta a kol.: Mechanika II. díl, Dynamika, Technický průvodce, SNTL, Praha 1986.

F.P.Beer, E.R.Johnson: Vector Mechanics for Engineers. Statics and Dynamics. McGraw–Hill, New York 1988.

Poznámka:
Rozvrh na zimní semestr 2024/2025:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Po
místnost T4:A1-405b

10:45–12:15
LICHÝ TÝDEN

(přednášková par. 1
paralelka 105)

Dejvice
Poč. učebna 405b
místnost T4:A1-405b

12:30–14:00
LICHÝ TÝDEN

(přednášková par. 1
paralelka 103)

Dejvice
Poč. učebna 405b
místnost T4:A1-405b

10:45–12:15
SUDÝ TÝDEN

(přednášková par. 1
paralelka 106)

Dejvice
Poč. učebna 405b
místnost T4:A1-405b

12:30–14:00
SUDÝ TÝDEN

(přednášková par. 1
paralelka 104)

Dejvice
Poč. učebna 405b
Út
místnost T4:D2-256
Vampola T.
14:15–15:45
(přednášková par. 1)
Dejvice
Posluchárna 256
místnost T4:C2-133
Bastl P.
16:00–17:30
(přednášková par. 1
paralelka 103)

Dejvice
Posluchárna 133
místnost T4:A1-505e
Beneš P.
15:00–16:45
(přednášková par. 2)
Dejvice
Učebna 505e
místnost T4:A1-505e
Beneš P.
15:00–16:45
(přednášková par. 2
paralelka 201)

Dejvice
Učebna 505e
místnost T4:C2-133
Bastl P.
16:00–17:30
(přednášková par. 1
paralelka 104)

Dejvice
Posluchárna 133
St
Čt

místnost T4:A1-405b

07:15–08:45
SUDÝ TÝDEN

(přednášková par. 1
paralelka 107)

Dejvice
Poč. učebna 405b
místnost T4:C2-436
Beneš P.
09:00–10:30
(přednášková par. 1
paralelka 105)

Dejvice
Posluchárna 436
místnost T4:C2-436
Beneš P.
10:45–12:15
(přednášková par. 1
paralelka 107)

Dejvice
Posluchárna 436
místnost T4:A1-405b

07:15–08:45
LICHÝ TÝDEN

(přednášková par. 1
paralelka 108)

Dejvice
Poč. učebna 405b
místnost T4:C2-436
Beneš P.
09:00–10:30
(přednášková par. 1
paralelka 106)

Dejvice
Posluchárna 436
místnost T4:C2-436
Beneš P.
10:45–12:15
(přednášková par. 1
paralelka 108)

Dejvice
Posluchárna 436
Rozvrh na letní semestr 2024/2025:
Rozvrh není připraven
Předmět je součástí následujících studijních plánů:
Platnost dat k 21. 11. 2024
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/cs/predmet10595402.html