Internal Combustion Engines I.
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
E211122 | Z,ZK | 6 | 4+2 |
- Lecturer:
- Antonín Mikulec (gar.), Jan Macek (gar.)
- Tutor:
- Antonín Mikulec (gar.), Jan Macek (gar.)
- Supervisor:
- Department of Automotive, Combustion Engine and Railway
- Synopsis:
-
To provide information concerning fundamentals of internal combustion engines (ICE): principles of combustion, formation of pollutants, gas exchange, super- and turbocharging; description of tools for fuel injection, mixture formation, valve gears, combustion realization, exhaust aftertreatment, lubrication and cooling.
- Requirements:
- Syllabus of lectures:
-
1.Principles of ICE performance; laws of thermodynamics; conservation laws for open system; basic distribution of ICE. Operation and control of system engine/load. Main engine characteristics.
2.ICE cycles - HP (high pressure) phase (closed system) in real and idealized form. Idealized cycles, example of analytical efficiency calculation. T-s diagram, efficiency assessment. Carnot cycle, real limits of ICE cycles (T, p, v). Stirling cycle.
3.LP (low pressure) phase (charge exchange) - real and idealized form at 4 stroke engine. 2 stroke engines. Volumetric efficiency and cylinder charging. Indicated efficiency and pumping work. Mechanical efficiency.
4.Schemes of gas turbines and super-turbocharged engines. Gas turbine cycle (Ericsson-Brayton), heat regeneration. Adiabatic irreversible changes. Principle of turbine performance - momentum change at blades.
5.Fuels - chemical components of HC fuels. Raw oil processing. Stoichiometry of fuel/air mixtures. Burnt gas composition.
6.Thermochemistry of fuels - Hess and Kirchhoff equations, calorific value. Reaction mechanisms. Laws of chemical kinetics / Guldberg-Waage&Arrhenius. Reaction equilibrium. Dissociation of combustion products.
7.Adiabatic flame temperature. Chemical efficiency. Elementary processes in mixture preparation, combustion and heat transfer - air/fuel mixing, pre-flame reactions, ignition delay, premixed flame - deflagration or detonation, diffusion flame.
- Syllabus of tutorials:
- Study Objective:
-
To understand engine operation and design proces
- Study materials:
-
Introduction to Internal Combustion Engines, Richard Stone
Advanced Engine Technology, Heinz Heisler
Internal Combustion Engine Fundamentals, John Heywood
The Internal Combustion Engine in Theory and Practice, Charles F. Taylor
Internal Combustion Engines, V. Ganesan
Automobiltechnisches Handbuch, Richard Bussien, Gustav Goldbeck
- Note:
- Time-table for winter semester 2011/2012:
- Time-table is not available yet
- Time-table for summer semester 2011/2012:
- Time-table is not available yet
- The course is a part of the following study plans: