Logo ČVUT
Loading...
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2011/2012

Electrical Circuits 2

The course is not on the list Without time-table
Code Completion Credits Range Language
XE31EO2 Z,ZK 5 2+2s
The course is a substitute for:
Electrical Circuits 2 (X31EO2)
Lecturer:
Tutor:
Supervisor:
Department of Circuit Theory
Synopsis:

The subject represents the continuation of EO1. It explains the difference

between time domain and frequency domain circuit analysis, defines the

signal transformation concept, frequency spectrum, operational analysis

(Fourier series, Fourier and Laplace transform). The subject is devoted to

the periodic non-sinusoidal steady state linear circuit analysis and to the

linear circuit transient analysis (both time domain analysis and operational

analysis). The transient responses (unit impulse response, unit step

response) and frequency responses of linear circuits are defined, their

meaning, application and relationships are presented.

The subject is closed by the transient analysis of transmission lines.

Requirements:

The exam can be passed with credit only. It is necessary to attend 50 %

of exercises at least.

Syllabus of lectures:

1. Signal transformations in circuit theory, sinusoidal steady state -

recapitulation, phasor as a transformation product, time and frequency

domain, periodic non-sinusoidal signals transformation, Fourier series,

discrete frequency spectrum.

2. Fourier transform, continuous frequency spectra, two-terminal frequency

characteristics.

3. Laplace transform, examples, two-terminal operational characteristics,

relationship between Fourier and Laplace transform.

4. Periodic non-sinusoidal steady state analysis in linear circuits, RMS

value, distortion factor, power of non-sinusoidal current.

5. Time domain and operational circuit equations.

6. Transients, time domain transient analysis.

7. 1st order transients.

8. Higher order transients.

9. Operational transient analysis.

10. Unit impulse response, unit step response, stability.

11. Frequency responses

12. Circuits with distributed parameters, lossless transmission line.

13. Finit length transmission line, wave reflections, standing waves,

examples.

14. Recapitulation, reserve.

Syllabus of tutorials:

1. Repetition - stationary steady state circuit analysis.

2. Repetition - sinusoidal steady state circuit analysis,

phasors as one-point frequency spectra.

3. Measurement on simple resistive and RC circuits - laboratory exercise.

4. Fourier series of periodic voltages and currentsů, discrete frequency

spectra.

5. Periodic non-sinusoidal steady state circuit analysis.

6. Fourier transform, continuous frequency spectra, two-terminal frequency

characteristics.

7. Laplace transform, two-terminal operational characteristics.

8. Time domain and operational circuit equations.

9. 1st order transients.

10. 2nd order transients.

11. Transients in RL a RLC circuits - laboratory exercise.

12. Operational transient analysis. Unit impulse and unit step response.

13. Frequency responses - Bode's approximation.

14. Transients on lossless transmission line - laboratory exercise,

computer simulation, credit.

Study Objective:
Study materials:

1.Mikulec M., Havlíček V.: Basic Circuit Theory, Vydavatelství ČVUT, Praha

2.Havlíček V., Čmejla R.: Basic Circuit Theory I - exercises, Vydavatelství ČVUT, Praha

3.Havlíček V., Čmejla R., Zemánek I.: Basic Circuit Theory II - exercises, Vydavatelství ČVUT, Praha

Note:
Further information:
No time-table has been prepared for this course
The course is a part of the following study plans:
Generated on 2012-7-9
For updated information see http://bilakniha.cvut.cz/en/predmet11748604.html