Logo ČVUT
Loading...
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2011/2012

Computational Geometry

The course is not on the list Without time-table
Code Completion Credits Range
E36VGE Z,ZK 4 2+2s
Lecturer:
Tutor:
Supervisor:
Department of Computer Science and Engineering
Synopsis:

Principles of computational geometry (CG), data structures and paradigms, methods of geometric search, convex polygons and hulls, applications of convex hull, proximity problems, Voronoi diagrams, triangulation, efficient intersection algorithms, intersection of semispaces and polygonal regions, geometry of rectangles, dual mappings and spaces, convex hull in dual space, algorithms of computer graphics and CG.

Requirements:
Syllabus of lectures:

1. Subject of computational geometry (CG)

2. Data structures and paradigms in CG

3. Methods of geometric searching

4. Convex hulls and convex polygons

5. Applications of convex hull

6. Proximity problem

7. Voronoi diagram

8. Triangulation of polygons

9. Intersections of segments and lines

10. Intersection of semispaces and polygonal regions

11. Geometry of rectangles

12. Dual mappings and spaces, convex hull in dual space

13. Algorithms of computer graphics & computational geometry

14. Application of CG in Geographic Information Systems

Syllabus of tutorials:

1. Algorithms of generation and searching 2D-interval trees

2. Location of point in a planar subdivision

3. Overmans's and van Leeuwen's algorithms for dynamical construction of convex hull

4. Construction of Voronoi diagram

5. Proximity problems solved by the Voronoi diagram

6. Algorithms of intersections of line segments

7. Algebra of plane polygons

8. Algebra of rectangles

9. Dual mappings, Line and plane intersections in a dual space

10. Presentation of student projects

11. Presentation of student projects

12. Presentation of student projects

13. Assessment

Study Objective:
Study materials:

[1] Preperata, F.P., Shamos, M.I.: Computational Geometry An Introduction. Springer-Verlag, Berlin 1985

[2] Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin 1987

[3] de Berg, M.,van Kreveld, M., Overmars, M., Schvarzkopf, O.: Computational Geometry. Springer-Verlag, Berlin 1997

Note:
Further information:
No time-table has been prepared for this course
The course is a part of the following study plans:
Generated on 2012-7-9
For updated information see http://bilakniha.cvut.cz/en/predmet11062004.html