Mathematics 5C
Code | Completion | Credits | Range |
---|---|---|---|
01M5C | Z,ZK | 4 | 2+2s |
- Lecturer:
- Tutor:
- Supervisor:
- Department of Mathematics
- Synopsis:
-
Linear transformations, eigenvalues, eigenvectors. Similar matrices, diagonalizability. Generalized eigenvectors, Jordan canonical form. Bilinear and quadratic forms. Positive definite matrices, symetric matrices. Ortogonality, Schmidt orthogonalization. Functions of matrices, matrix exponencial. Singular value decomposition. Numerical computation of eigenvalues and eigenvectors. Information, entropy, communication channels. Kraft's inequality, McMillan's theorem. Shannon's theorem. Linear codes, Hamming codes. Reed-Muller codes, cyclic codes.
- Requirements:
- Syllabus of lectures:
-
1. Linear transformations, eigenvalues, eigenvectors
2. Similar matrices, diagonalizability
3. Generalized eigenvectors, Jordan canonical form
4. Bilinear and quadratic forms
5. Positive definite matrices, symetric matrices
6. Ortogonality, Schmidt orthogonalization
7. Functions of matrices, matrix exponencial
8. Singular value decomposition
9. Numerical computation of eigenvalues and eigenvectors
10. Information, entropy, communication channels
11. Kraft's inequality, McMillan's theorem
12. Shannon's theorem
13. Linear codes, Hamming codes
14. Reed-Muller codes, cyclic codes
- Syllabus of tutorials:
-
1. Linear transformations, eigenvalues, eigenvectors
2. Similar matrices, diagonalizability
3. Generalized eigenvectors, Jordan canonical form
4. Bilinear and quadratic forms
5. Positive definite matrices, symetric matrices
6. Ortogonality, Schmidt orthogonalization
7. Functions of matrices, matrix exponencial
8. Singular value decomposition
9. Numerical computation of eigenvalues and eigenvectors
10. Information, entropy, communication channels
11. Kraft's inequality, McMillan's theorem
12. Shannon's theorem
13. Linear codes, Hamming codes
14. Reed-Muller codes, cyclic codes
- Study Objective:
- Study materials:
-
[1] C. D. Meyer: Matrix Analysis and Applied Linear Algebra. SIAM, 2000.
- Note:
- Further information:
- No time-table has been prepared for this course
- The course is a part of the following study plans:
-
- Kybernetika a měření-bakalářský blok (compulsory course)
- Kybernetika a měření-bakalářský blok (compulsory course)