Sediment and Phosphorus Transport in Watersheds

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
D43TSFP KZ 1P+1C Czech
Miroslav Bauer, Josef Krása (guarantor), Barbora Jáchymová
Miroslav Bauer, Josef Krása (guarantor), Barbora Jáchymová
Department of Landscape Water Conservation

Course students get acquainted with the principles of modeling of water erosion and sediment transport and sediment bound nutrients. The basic tools used are empirically based distributed transport models (Watem/SEDEM, SWAT, etc.). The topics cover calibration and verification, options to provide relevant input data, principles of balancing phosphorus in large river basins, the importance and the retention capacity of the individual components of the landscape (agricultural land, other areas, waterways , water tanks). The processes are described and shown on the examples of how to implement field data (measurements in the catchment area, suspended solids flows and sediment in the tanks). Students will solve a separate or team role with the realization of measurement in the field, build a model, analysis of collected data and the presentation of results. Part of the teaching are excursions to the experimental basin and model site.

Syllabus of lectures:
Syllabus of tutorials:
Study Objective:
Study materials:

Povinná literatura:

•Merritt, W. S., Letcher, R. A. and Jakeman, A. J. (2003) ‘A review of erosion and sediment transport models’, Environmental Modelling & Software, 18(8–9), pp. 761–799. doi: 10.1016/S1364-8152(03)00078-1.

•De Vente, J. et al. (2013) ‘Predicting soil erosion and sediment yield at regional scales: Where do we stand?’, Earth-Science Reviews. Elsevier B.V., 127, pp. 16–29. doi: 10.1016/j.earscirev.2013.08.014.

Doporučená literatura:

•Jachymova, B. & Krasa, J., 2017. A new method for modeling dissolved phosphorus transport with the use of WaTEM/SEDEM. Environmental Monitoring and Assessment, 189(8), p.365. Available at: http://link.springer.com/10.1007/s10661-017-6082-4 [Accessed August 8, 2017].

•Krasa, J., Dostal, T., Van Rompaey, A., Vaska, J. & Vrana, K., 2005. Reservoirs’ siltation measurments and sediment transport assessment in the Czech Republic, the Vrchlice catchment study. Catena, 64(2–3), pp.348–362. Available at: http://www.sciencedirect.com/science/article/pii/S0341816205001396.

•Other recent relevant articles indexed by Web of Science.

Time-table for winter semester 2019/2020:
Time-table is not available yet
Time-table for summer semester 2019/2020:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2020-04-09
For updated information see http://bilakniha.cvut.cz/en/predmet6025606.html