Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2019/2020

Mathematical Analysis 1

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
B0B01MA1A Z,ZK 6 4P+2S Czech
The course cannot be taken simultaneously with:
Mathematical Analysis 1 (B0B01MA1)
Lecturer:
Veronika Sobotíková (guarantor)
Tutor:
Veronika Sobotíková (guarantor), Josef Hekrdla, Michal Hroch, Anna Kalousová, Karel Pospíšil
Supervisor:
Department of Mathematics
Synopsis:

This is an introductory course to differential and integral calculus of functions of one real variable.

Requirements:

For information, see http://math.feld.cvut.cz/0educ/pozad/b0b01ma1a.htm (in Czech).

Syllabus of lectures:

1.Real numbers. Elementary functions.

2. Limit and continuity of functions.

3. Derivative of functions, its properties and applications.

4. Mean value theorem. L'Hospital's rule, Taylor polynomial.

5. Local and global extrema and graphing functions.

6. Indefinite integral, basic integration methods.

7. Integration of rational and other types of functions.

8. Definite integral (using sums). Newton-Leibniz formula.

9. Improper integral. Application of integrals.

10. Sequences and their limits.

11. Series, convergence tests.

12. Introduction to differential equations.

13. Other topics of mathematical analysis.

Syllabus of tutorials:

1.Real numbers. Elementary functions.

2. Limit and continuity of functions.

3. Derivative of functions, its properties and applications.

4. Mean value theorem. L'Hospital's rule, Taylor polynomial.

5. Local and global extrema and graphing functions.

6. Indefinite integral, basic integration methods.

7. Integration of rational and other types of functions.

8. Definite integral (using sums). Newton-Leibniz formula.

9. Improper integral. Application of integrals.

10. Sequences and their limits.

11. Series, convergence tests.

12. Introduction to differential equations.

13. Other topics of mathematical analysis.

Study Objective:

The aim of the course is to introduce students to basics of differential and integral calculus of functions of one variable.

Study materials:

[1] J. Stewart, Single variable calculus, Seventh Edition, Brooks/Cole, 2012, ISBN 0538497831.

Note:
Further information:
http://math.feld.cvut.cz/veronika/vyuka/ma1a.htm
Time-table for winter semester 2019/2020:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
Tue
roomT2:D3-209
Sobotíková V.
09:15–10:45
(lecture parallel1)
Dejvice
Posluchárna
roomT2:A4-204

12:45–14:15
(lecture parallel1
parallel nr.116)

Dejvice
Učebna
roomT2:C3-54
Hekrdla J.
14:30–16:00
(lecture parallel1
parallel nr.121)

Dejvice
Posluchárna
roomT2:C3-54
Hekrdla J.
12:45–14:15
(lecture parallel1
parallel nr.122)

Dejvice
Posluchárna
roomT2:C3-54

12:45–14:15
(lecture parallel1
parallel nr.123)

Dejvice
Posluchárna
Fri
roomT2:C3-52
Hekrdla J.
09:15–10:45
(lecture parallel1
parallel nr.112)

Dejvice
Posluchárna
roomT2:A4-202a
Hekrdla J.
12:45–14:15
(lecture parallel1
parallel nr.102)

Dejvice
Ucebna
roomT2:A4-202a
Hekrdla J.
14:30–16:00
(lecture parallel1
parallel nr.104)

Dejvice
Ucebna
roomT2:A4-204
Pospíšil K.
16:15–17:45
(lecture parallel1
parallel nr.105)

Dejvice
Učebna
roomT2:C3-54
Pospíšil K.
11:00–12:30
(lecture parallel1
parallel nr.111)

Dejvice
Posluchárna
roomT2:C3-54
Pospíšil K.
14:30–16:00
(lecture parallel1
parallel nr.113)

Dejvice
Posluchárna
roomT2:C3-54

14:30–16:00
(lecture parallel1
parallel nr.114)

Dejvice
Posluchárna
Thu
roomT2:D3-209
Sobotíková V.
11:00–12:30
(lecture parallel1)
Dejvice
Posluchárna
roomT2:C3-54
Kalousová A.
14:30–16:00
(lecture parallel1
parallel nr.101)

Dejvice
Posluchárna
roomT2:C3-51
Hroch M.
16:15–17:45
(lecture parallel1
parallel nr.108)

Dejvice
Posluchárna
roomT2:C3-51
Hroch M.
18:00–19:30
(lecture parallel1
parallel nr.115)

Dejvice
Posluchárna
roomT2:C3-54
Sobotíková V.
12:45–14:15
(lecture parallel1
parallel nr.103)

Dejvice
Posluchárna
Fri
Time-table for summer semester 2019/2020:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2019-12-08
For updated information see http://bilakniha.cvut.cz/en/predmet5605506.html