Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2019/2020

Space Engineering

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
B3M37KIN Z,ZK 6 2P+2L Czech
Corequisite:
Safety in Electrical Engineering for a master´s degree (BEZM)
Lecturer:
Stanislav Vítek, René Hudec (guarantor), Kristian Hengster-Movric, Martin Hromčík, Pavel Kovář
Tutor:
Kristian Hengster-Movric, Martin Hromčík, Pavel Kovář, Ondřej Nentvich, Ladislav Sieger, Petr Skala, Veronika Stehlíková, Martin Urban
Supervisor:
Department of Radioelectronics
Synopsis:

The subject acquaints students with the basics of physics of the space environment and the technologies used in space systems, satellites, spacecrafts and launchers and methods used for the design and preparation of space missions. Subject matter includes a detailed description of the instrumentation of satellites and spacecrafts and its resistance to external influences of the space environment, and analysis of instruments and systems for spacecratfts and methods of their testing. It provides a basic overview of the trajectories of spacecrafts and their applications. The course also covers optoelectronics in space systems, sensors used, their modeling and description. It discusses the principles of underlying calculations, simulations and their processing.

Requirements:

Physics at bachelor level, basics of Matlab and C/C++

Syllabus of lectures:

1 Space Physics. Conditions of the space environment and its specifics. Vacuum. Cosmic rays and particles and their variations with time and place. Van Allen radiation belts, the magnetosphere, ionosphere, impacts of micrometeroroids and space debris. Basics of astronomy and cosmology.

2. Origin and evolution of the U niverse, the theory of relativity. Galaxies, active galaxies, supernovae, pulsars, quasars, gamma ray bursts, the redshift, the age of the Universe. Cosmic background radiation. The solar system and the planetary and cometary missions.

3. Space technology and materials. Their behavior in space (vacuum), charging and outgasing and optimization. Radiation interaction with the material, radiation effects.

4 Satellites and space probes. Basic categories, applications, and design. Electric power sources. Thermal protection. Proposals for space missions. Landers and orbiters.

5. Payloads of satellites and spacecrafts and their design. Ground segment. Data handling and transmission, telemetry. Pico and nanosatelites.

6 Flight dynamics of satellites. Linearization, linear analysis, poles, modes.

7 Stabilization and orientation control using jets, reaction wheels, and spin.

8 Issue of desaturation of reaction wheels. Cooperative control based on a combination of nozzles and reaction wheels.

9 Stabilization orientation during translation maneuvers.

10 Space Electronics and its specifics. Software and programs for space travel and projects. Their specifics and applications. Tests of space systems and devices. Test conditions and criteria. TRL of onboard systems and devices.

11 Space transport vehicles, launchers, shuttles and alternative transport space systems. The principles of rockets with liquid and solid fuels, hybrid rockets. Suitable orbits and trajectories of spacecrafts with respect to specific applications, the Lagrangian points. Flyby.

12 Manned spaceflight and their specifics in particular with regard to the technical and security requirements for on-board systems. Spacecrafts and orbital stations. Long-term manned flights, manned lunar and planetary missions.

13 Space optics. Optoelectronic systems for space. Optical, x-ray, infrared, radio, and gamma telescopes, cameras and systems. Their protection from the effects of outer space, shielding.

14 Space navigation and telecommunications. Remote sensing, its types and usage. Multispectral images and their applications.

Syllabus of tutorials:

Laboratory exercises in the first half of the semester will focus on practical verification of basic principles of space instrumentation, systems and subsystems and methods of design of space missions. In the second half groups of 2-3 students will be created, which in turn will solve the problems from the fields of teaching materials. The students will work together with teachers, so that at the end of the semester they will be able to present solutions in the form of a short presentation (10 min.). There will also be organized excursions.

Study Objective:
Study materials:

[1] Maimi A. K., Agrawal V.: Satellite technology-principles and applications, Wiley 2007, ISBN: 978-0-470-03335-7

[2] Fortescue P.,Stark J., Swinerd G.: Spacecraft systems engineering, 3rd edition, Wiley 2003, ISBN: 978-0-470-85102-9

[3] Tribble, Alan C.: Space Environment Implications for Spacecraft Design. Princeton University Press 2003, ISBN: 978-0-69-110299-3

Note:
Further information:
https://moodle.fel.cvut.cz/course/B3M37KIN
Time-table for winter semester 2019/2020:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
roomT2:C3-438
Urban M.
12:45–14:15
(lecture parallel1)
Dejvice
Laborator
roomT2:C3-438
Urban M.
14:30–16:00
(lecture parallel1)
Dejvice
Laborator
roomT2:C3-438
Hudec R.
16:15–17:45
(lecture parallel1)
Dejvice
Laborator
Tue
Fri
Thu
Fri
Time-table for summer semester 2019/2020:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2019-10-18
For updated information see http://bilakniha.cvut.cz/en/predmet4749406.html