Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2020/2021

Linear Systems

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
BE3M35LSY Z,ZK 8 4P+2C English
Lecturer:
Petr Hušek (guarantor)
Tutor:
Petr Hušek (guarantor)
Supervisor:
Department of Control Engineering
Synopsis:

The purpose of this course is to introduce mathematical tools for the description, analysis, and partly also synthesis, of dynamical systems. The focus will be on linear time-invariant multi-input multi-output systems and their properties such as stability, controllability, observability and state realization. State feedback, state estimation, and the design of stabilizing controllers will be explained in detail. Partially covered will be also time-varying and nonlinear systems.

Some of the tools introduced in this course are readily applicable to engineering problems such as the analysis of controllability and observability in the design of flexible space structures, the design of state feedback in aircraft control, and the estimation of state variables. The main motivation, however, is to pave the way for the advanced courses of the study program.

The prerequsites for this course include undergraduate level linear algebra, differential equations, and Laplace and z transforms.

Requirements:

There are no formal prerequisites to register the course. However, an undergraduate course on systems and control, such as Automatic Control

(AE3B35ARI) or Modelling and Simulation of Dynamical Systems

(AE3B35MSD) may be useful. The knowledge required for the course AE3M35TDS includes undergraduate level differential equations, linear algebra, Laplace and z transforms as presented in the recommended textbook (P. J. Antsaklis, A. N. Michel: A Linear Systems Primer, Birkhäuser, 2007 - Sections 1.2, 1.3, 1.5; Tables 3.1, 3.2, 3.3, 3.4; Appendix A).

Syllabus of lectures:

Systems and signals. Linear and time-invariant systems. Differential and difference systems. The concept of state, state equations.

Solving the state equations, modes of the system. Equivalence of systems. Continuous-time, discrete-time, and sampled-data systems.

Lyapunov stability, exponential stability, internal and external stability properties of linear systems.

Reachability and controllability of systems.

Observability and constructibility of systems. Dual systems.

Standard forms for systems, Hautus' tests, Kalman's decomposition.

Internal and external descriptions of systems, impulse response and transfer function. Poles and zeros of systems.

State realizations of external descriptions. Minimal realizations, balanced realizations.

State feedback, state regulation, pole assignment, LQ regulator.

Output injection, state estimation, LQ estimator.

Interconnection of systems, feedback controllers, stabilizing controllers.

State representation of stabilizing controllers. Separation property of state regulation and estimation.

Syllabus of tutorials:

For each exercise session, a list of exercises from the previous lecture is made available that the student is requested to solve and deliver the solutions prior to the session. Each session begins by a short test, then the exercise solutions will be checked and discussed, and difficult points will be explained.

Study Objective:

The purpose of this course is to introduce mathematical tools for the description, analysis, and partly also synthesis, of dynamical systems. The focus will be on linear time-invariant multi-input multi-output systems and their properties such as stability, controllability, observability and state realization. State feedback, state estimation, and the design of stabilizing controllers will be explained in detail. Partially covered will be also time-varying and nonlinear systems. Some of the tools introduced in this course are readily applicable to engineering problems such as the analysis of controllability and observability in the design of flexible space structures, the design of state feedback in aircraft control, and the estimation of state variables.

Study materials:

P.J. Antsaklis, A.N. Michel: A Linear Systems Primer. Birkhäuser, Boston 2007. ISBN-3: 978-0-8176-4460-4

Note:
Further information:
https://moodle.fel.cvut.cz/course/view.php?id=2586
Time-table for winter semester 2020/2021:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
Tue
roomKN:E-126
Hušek P.
16:15–19:30
(lecture parallel1)
Karlovo nám.
Trnkova posluchárna K5
Fri
roomKN:E-26
Hušek P.
16:15–17:45
(lecture parallel1
parallel nr.1)

Karlovo nám.
Laboratoř TŘ2
Thu
Fri
Time-table for summer semester 2020/2021:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2020-10-27
For updated information see http://bilakniha.cvut.cz/en/predmet4679306.html