Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2019/2020

Solid State Physics

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
B2M34SST Z,ZK 6 3P+1L Czech
Lecturer:
Jan Voves (guarantor)
Tutor:
Jan Voves (guarantor)
Supervisor:
Department of Microelectronics
Synopsis:

The subject is aimed on solid state physics including some parts of statistical physics.

Requirements:
Syllabus of lectures:

1. Solid and condensed mater, their description; crystals. Crystal classification.

2. Crystal bindings, their character and classification; van der Waals crystals. Ionic and covalent crystals.

3. Reciprocal lattice. Brillouin zone, RTG and electron structure analysis.

4. Solid state thermodynamics, phase equilibrium, phase diagrams, phase transformations.

5. Dynamical properties of crystal lattice; heat capacity, deformation.

6. Lattice defects; point defects, dislocations; surface properties, nanocrystals.

7. Band structure of solids. Semiconductors, effective mass, density of states.

8. Semiconductor in thermodynamic equilibrium. Electrons and holes. Maxwell-Boltzmann and Fermi-Dirac distribution. Fermi level calculation.

9. Transport effects in semiconductors, scattering mechanisms.

10. Electrons and holes in non-equilibrium, generation and recombination of charge carriers.

11. Electric conductivity of dielectrics, dielectric strength, inner and thermal breakdown. Dielectrics polarization in alternating field, complex permittivity and dissipation factor, ferroelectrics, pyroelectrics, piezoelectrics.

12. Metals, Fermi gas of free electrons, Fermi surfaces. Magnetic effects in solids and their origin, dia-, para-, fero-, feri-, antifero- magnetic solids.

13. Basics of superconductivity. Meissner effect, Cooper pairs, high temperature superconductors.

14. Optical properties of solids, luminescence.

Syllabus of tutorials:

1. Seminary: Quantum mechanics basics repetition

2. Seminary: Periodic table of elements, quantum model of atomu

3. Seminary: Application of quantum mechanics in the structures with periodic potential

4. Computer tools in S.St. Physics

5. Atomistic simulator Quantumwise.

6. Quantumwise - Virtual Nanolab basics

7. Quantumwise - simulation of S.St. bandstructure.

8. Quantumwise - simulation of lattice vibrations.

9. Simulation of crystal defects

10. Deep Level Transient Spectroscopy

11. Transport simulation of electrons by Monte Carlo method

12. Simulation of ferromagnetics

13. Excursion: FzÚ AV ČR - S. St. Characterisation

14. Credit hour

Study Objective:

The subject informs about basic properties of materials used in electronics, esp. about semiconductors.

Study materials:

1. Ch. Kittel: Introduction to Solid State Physics, 8th ed., Wiley 2005

2. K. F. Brennan: The Physics of Semiconductors, Cambridge University Press 1999

Note:
Further information:
https://moodle.fel.cvut.cz/enrol/index.php?id=2660
Time-table for winter semester 2019/2020:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
Tue
Fri
roomT2:B2-s141k
Voves J.
09:15–11:45
(lecture parallel1)
Dejvice
Cvičebna
roomT2:B2-s141k
Voves J.
11:45–12:30
(lecture parallel1)
Dejvice
Cvičebna
Thu
Fri
Time-table for summer semester 2019/2020:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2020-01-17
For updated information see http://bilakniha.cvut.cz/en/predmet4674606.html