CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2020/2021

The course is not on the list Without time-table
Code Completion Credits Range Language
Lecturer:
Milan Polívka, Zbyněk Škvor (guarantor), Pavel Hazdra
Tutor:
Milan Polívka, Zbyněk Škvor (guarantor), Pavel Hazdra, Pavel Staněk
Supervisor:
Department of Electromagnetic Field
Synopsis:

Introduction into computational principles and techniques used in modern microwave circuit analyses and design.

Requirements:
Syllabus of lectures:

1. Introduction into microwaves. Circuits seen as media with propagating waves.

2. Transmission lines used in Microwave Integrated Circuits, including discontinuities.

3. Optimization applied to circuits,error function, local and global methods.

4. Bioinspired optimization method, Pareto optimization.

5. Introduction into Numerical Electromagnetics.

6. Finite differences applied to static and time-harmonic fields (FD).

7. Finite Element Method (FEM), and the Method of Moments (MoM).

8. Analysis methods suitable for microwave circuits and systems, frequency domain.

9. Finite Differences in Time Domain (FDTD).

10. Approximate boundary conditions in Time domain, absorbing boundary implementation.

11. Circuit parameter/model extraction.

12. Introduction into non-linear circuit analysis in frequency and time domains. Harmonic balance.

13. Large structure analysis.

14. Analysis of optoelectronic circuits.

Syllabus of tutorials:

1. Introduction. Problems resulting from finite circuit dimensions - and how to make use of it.

2. Finite Difference (FD) method in electrostatics

3. FD, dielectric interface

4. FD, shielded strip analysis, project task assignment

5. Finite Difference Time Domain (FDTD) method, discretion of Maxwell equations in 1D space, numerical dispersion, stability of the solution

6. FDTD, excitation, absorption boundary condition (ABC), reflection at the interface of two environments

7. FDTD, propagation constant, material absorption, perfectly matched layers (PML), transition to freq. area - coefficient of reflection

8. Work on a project task

9. CST Microwave Studio - work with a professional EM field simulator

10. CST Microwave Studio - work with EM field simulator, advanced functions

11. Moment method - distribution of the charge on the board

12. Method of moments - distribution of current density on a dipole, input impedance, dependence of antenna parameters on segmentation density

13. Getting started with the 3D MoM simulator EM field AXIEM

Study Objective:

This course provides its students with knowledge of principles and techniques used in modern microwave circuits as well as with basic design methods used in such systems.

Study materials:

[1] R. Garg, analytical and Computational Methods in Electromagnetics, Artech House, 2008.

[2] Gupta, K.C., Garg, R., Chadha, R.: Computer-Aided Design of Microwave Circuits. Artech House, Dedham 1981.

[3] D. M. Pozar, Microwave Engineering, 4th ed., John Wiley &amp; Sons, 2012.

Note:
Further information: