Mobile Networks

The course is not on the list Without time-table
Code Completion Credits Range Language
B2M32MKS Z,ZK 6 2P + 2L Czech
The course is a substitute for:
Mobile Communication Networks (A2M32MKS)
Pavel Mach, Zdeněk Bečvář (guarantor), Robert Bešťák
Pavel Mach, Zdeněk Bečvář (guarantor), Robert Bešťák, Jan Plachý
Department of Telecommunications Engineering

The lectures introduce principles and functionalities of mobile networks with special focus on currently deployed technologies and future mobile networks. Furthermore, architecture and fundamental principles of GSM, UMTS, LTE and LTE-A will be explained. Then, selected key technologies for future mobile networks (e.g., 5G) will be explained.


Students must have fundamental knowledge of modulations, coding techniques and multiple access methods for wireless networks. Furthermore, they must understand to components of a communication chain, signal propagation and radio channel characteristics (attenuation, gain, interference, noise) and characteristics of spectrum and signals (mean value, energy, power, correlation, etc.). They also should have fundamental knowledge of individual layers of RM-OSI model.

Syllabus of lectures:

1. Introduction, evolution of mobile networks, standardization

2. Architecture of GSM - data transmission in GSM (HSCSD, GPRS, EDGE)

3. Architecture of UMTS - services, applications, radio interfaces, signaling

4. Control and management of UMTS - radio link control, radio access

5. Data transmission in UMTS - HSPA

6. Architecture of LTE-A - interfaces, services, applications

7. Radio interface in LTE-A - frequency bands, medium access, frame, signaling

8. Control and management in LTE-A - control and management layers, medium access

9. Control and management in LTE-A - Radio resource control and allocation

10. Heterogeneous networks - multi-tier networks, ultra dense networks - problems and solutions

11. Self-organizing networks - coverage optimization, mobility robustness, spectrum sharing, cognitive radio

12. Advanced techniques for future mobile networks - D2D communication, machine type communication (MTC)

13. Advanced techniques for future mobile networks - cooperative communication, duplex methods, multiple access, frequency bands

14. Evolution of mobile networks towards 5G - satellite communications, software defined networking (SDN), Network Function Virtualization (NFV), centralization/distribution of radio access network features

Syllabus of tutorials:

1. Introduction, schedule, requirements

2. Introduction to MATLAB, implementation of scenario

3. Users' mobility modelling

4. Signal propagation, interference

5. Mobility management, handover decision

6. Channel error modelling, data transmission

7. Physical layer - modulation and coding, frame structure

8. LAB 1 - Data transmission in mobile network

9. LAB 1 - Data transmission in mobile network

10. LAB 2 - Energy consumption in mobile network

11. LAB 2 - Energy consumption in mobile network

12. LAB 3 - Scheduling in mobile network

13. LAB 3 - Scheduling in mobile network

14. Defense of the semestral project, Credits

Study Objective:

The students learn principles of different generations of mobile networks and they will be able to solve problems related to network planning and operation.

Study materials:

[1] M. Sauter, „From GSM to LTE-Advanced: An Introduction to Mobile Networks and Mobile Broadband,“ Revised Second Edition. Wiley. 2014.

[2] G. de la Roche, „A. A. Glazunov, B. Allen, “LTE-Advanced and Next Generation Wireless Networks," Wiley, 2013.

[3] J. Rodriquez, „Fundamentals of 5G Mobile Networks,“ Wiley, 2015.

Further information:
No time-table has been prepared for this course
The course is a part of the following study plans:
Data valid to 2020-08-12
For updated information see http://bilakniha.cvut.cz/en/predmet4650006.html