Applied Quantum Chromodynamics at High Energies
Code  Completion  Credits  Range 

D02AKCH  ZK 
 Lecturer:
 Ján Nemčík
 Tutor:
 Ján Nemčík
 Supervisor:
 Department of Physics
 Synopsis:

This lecture is oriented to provide some basic applications of quantum chromodynamics that corresponds to understanding of the dynamics of processes in particle physics at high energies on proton and nuclear targets that are currently measured by experiments at RHIC and LHC colliders. Complementary informations to lectures of Basics of quantum chromodynamics will be provided.
 Requirements:

Knowledge of quantum field theory and basics of quantum chromodynamics.
 Syllabus of lectures:

1. Basics of theory of strong interactions
 QCD Lagrangian and symmetries,
 QCD versus QED,
 asymptotic freedom,
 chiral symmetry breaking,
 quark confinement,
 evidence for colored quarks
2. Color transparency
 quasielastic scattering on nuclei,
 diffractive electroproduction of vector mesons
3. Hadronization of colored charges.
4. DIS
 Bjorken scaling and parton model,
 scaling violation and DGLAP evolution equation,
 factorization theorem,
 BFKL formalism,
 GLRMQ evolution equation and saturation
5. Color dipole formalism  DIS at small x:
 KST vs GBW model,
 GBW model with DGLAP equation and dipole evolution
6. Production of DrellYan pairs and direct photons
 parton description vs. color dipole approach
7. Diffraction
 diffraction in nonabelian theories,
 quantum mechanics of diffraction,
 diffractive DIS,
 diffractive DrellYan,
 diffractive Higgs boson production
8. Quark and gluon shadowing, Cronin effect and nuclear broadening
9. Quenching of highpT hadrons: Energy loss vs Color transparency
10. Energy conservation in highpT nuclear reactions
11. Production of heavy quarks as an alternative way for study of properties of the medium created after heavy ion collisions
 Syllabus of tutorials:
 Study Objective:

To provide a deeper understanding of quantum chromodynamics with respect mainly to recent requirements to analyze and interpret the data measured by experiments in CERN and BNL. This lecture is focused mainly for students of doctoral studies.
Knowledge:
Methods used in quantum chromodynamics
Skills:
Using of above mentioned methods on certain problems in quantum chromodynamics
 Study materials:

Basic references:
1. H. Georgi: Lie Algebras in Particle Physics; Perseus Books, 1999.
2. J. D. Bjorken, S. D. Drell: Relativistic Quantum Theory; McGrawHill Book Co., 1965.
3. M. E. Peskin, D. Schroeder: An Introduction To Quantum Field Theory; Westview Press, 1992.
4. F. Halzen, A. D. Martin: Quarks and Leptons; John Wiley and sons, 1984.
5. W. Greiner, S. Schramm, E. Stein: Quantum Chromodynamics; Springer, 1989.
6. R. Vogt: Ultrarelativistic HeavyIon Collisions; Elsevier Science, 2007.
7. S. Sarkar, H. Satz, B. Sinha: The Physics of the QuarkGluon Plasma; Springer, 2010.
8. XinNian Wang: Systematic study of high p T hadron spectra in pp, pA, and AA collisions at ultrarelativistic energies; Phys.Rev. C61 064910 (2000).
Recommended references:
1. B. Z. Kopeliovich, J. Nemchik: Challenges of highpT processes on nuclei; J.Phys G38, 043101 (2011).
2. B. Z. Kopeliovich, J. Nemchik, et al.: Color transparency versus quantum coherence in electroproduction of vector mesons off nuclei; Phys.Rev. C65, 035201 (2002).
3. B. Z.Kopeliovich, J. Nemchik, et al.: Nuclear hadronization: Within or without?; Nucl.Phys. A740, 211 (2004).
4. B. Z.Kopeliovich, A. Schaefer, A. V. Tarasov: Nonperturbative effects in gluon radiation and photoproduction of quark pairs; Phys.Rev. C62, 054022 (2000);
Bremsstrahlung of a quark propagating through a nucleus; Phys.Rev. C59, 1609 (1999).
5. B. Z. Kopeliovich, J. Nemchik et al.: Energy conservation in highpT nuclear reactions; Int.J.Mod.Phys. E23, 1430006 (2004).
6. J. L.Albacete, et al.: Predicions for p+Pb collisions at sqrt{s} = 5 TeV; Int.J.Mod.Phys. E22, 1330007 (2013).
7. B. Z. Kopeliovich, J. Nemchik, et al.: Quenching of highpT hadrons: Energy loss vs color transparency; Phys.Rev. C86, 054904 (2012).
8. B. Z. Kopeliovich, A. Rezaeian: Applied high energy QCD; Int.J.Mod.Phys. E18, 1629 (2009);
Applied QCD; 4th CERN  CLAF School of HighEnergy Physics, Vina del Mar, Chile, 18 Feb  3 Mar 2007, pp.51104 (CERN2008004).
9. B.Z. Kopeliovich, J. Nemchik, I.K. Potashnikova, I. Schmidt: Novel scenario for production of heavy flavored mesons in heavy ion collisions; arXiv:1701.07121 [hepph], EPJ Web Conf. 164, 01018 (2017).
10. V.P. Goncalves et al.: DrellYan process in pA
collisions: Pathintegral treatment of coherence effects;
Phys.Rev. D94, 114009 (2016).
11. B.Z. Kopeliovich, J. Nemchik, I.K. Potashnikova, I. Schmidt: Gluon Shadowing in DIS off Nuclei; J.Phys. G35,115010 (2008).
12. B.Z. Kopeliovich, J. Nemchik, I. Schmidt:
Production of Polarized Vector Mesons off Nuclei; Phys.Rev. C76, 025210 (2007).
Color Transparency at Low Energies: Predictions for JLAB; Phys.Rev. C76, 015205 (2007).
13. B.Z. Kopeliovich, J. Nemchik: Time Evolution of Jets and Perturbative Color Neutralization; Nucl.Phys. A782, 224 (2007).
14. B.Z. Kopeliovich et al.: Breakdown of QCD factorization at large Feynman x; Phys.Rev. C72, 054606 (2005).
15. J. Nemchik: Nuclear shadowing in DIS: Numerical solution of evolution equation for the green function; Phys.Rev. C68, 035206 (2003).
16. B.Z. Kopeliovich et al.: Cronin effect in hadron production off nuclei; Phys.Rev.Lett. 88, 232303 (2002).
 Note:
 Timetable for winter semester 2020/2021:
 Timetable is not available yet
 Timetable for summer semester 2020/2021:
 Timetable is not available yet
 The course is a part of the following study plans: