Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2019/2020

Computer Simulation of Condensed Matter

Login to KOS for course enrollment Display time-table
Code Completion Credits Range
D11SIKL ZK
Lecturer:
Petr Sedlák (guarantor), Ladislav Kalvoda (guarantor)
Tutor:
Supervisor:
Department of Solid State Engineering
Synopsis:

Computer simulation in condensed-matter physics is becoming an important tool used by both experimentalist and theorists to develop new materials and technologies. Thus, solution of many practical problems can be transferred from the real to a „virtual“ laboratory. During the course, students will be introduced to the theoretical background of basic computation methods and let to test the acquired knowledge in practical exercises. Each lesson is organized as a tutorial where typical problems are solved with detailed explication of the computation methods used. The course is taking place in Computer classroom of the Department of Solid State Physics. Practical demonstration and exercises are using Material Studio simulation environment (Accelrys Software Inc.).

Requirements:

Knowledge of quantum physics and numerical mathematics (lectures 02KVAN, 01NUMB at FNSPE)

Syllabus of lectures:

1. Setting up models of molecules, macromolecules, crystals, surfaces, slabs and nanostructures. Rules applied to get realistic starting structures. Work with fragment libraries. Creation of projects. Exercise: MS Materials Visualizer.

2. Construction of extended amorphous assemblies with periodic boundary conditions under various selected thermodynamic conditions. Exercise: Amorphous Cell.

3. Classical simulation theory: Concept of force fields, bond deformations, non-bond interactions, special types of force fields, application of molecular mechanics approaches in Materials Studio, Exercise: MS Discover, MS Forcite, MS Forcite Plus.

4. Classical simulation theory: Minimization tasks (geometry optimization of molecule, energy minimization, mathematical methods for finding energy minima, energy pathways and transition structures). Exercise: MS Discover

5. Classical simulations theory: Computer simulations of dynamic system evolution (thermodynamic ensembles, phase space, treatment of long-range interactions, dissipative particle dynamics and other approximate methods). Exercise: MS Amorphous Cell, MS Mesodyne.

6. Geometrical and statistical analysis of the calculated results. Exercise: analytical tools embedded in MS Materials Visulizer, MS Amorphous Cell, MS Discover, and MS Forcite.

7. Scattering theory and crystalline structure determination: Powder diffraction, Rietveld refinement with energies. Exercise: MS Reflex Plus

8. Quantum mechanical concepts: Schroedinger equation, Self-consistent field theory, DFT, Hohenberg-Kohn theorems, Kohn-Sham ansatz, pseudopotentials, Exercise: MS CASTEP, MS DMol3.

9. Quantum mechanical concepts: Semi-empirical approach. Exercise: MS VAMP.

10. Quantum mechanical concepts: First-principles molecular dynamics - Car-Parrinello method, Exercise: MS CASTEP, MS DMol3.

11. Quantum mechanical concepts: phonons and dielectric response calculation. Exercise: MS CASTEP.

12. Quantum mechanical concepts: Evaluation of optical absorption and emission spectra. Exercise: MS VAMP.

13. Quantum mechanical concepts: Stability of molecular structures. Exercise: MS DMOL3.

Syllabus of tutorials:

A practical exercise will follow each of the treated theoretical topics.

Study Objective:

Knowledge:

Basics of the theory and structure of bulk solid states.

Skills:

Mastering basics of the theory and practical realization of computer simulations for most common condensed-state systems.

Study materials:

Key references:

[1]. A.R. Leach: Molecular Modeling: Principles and Applications, 2nd edition, Prentice Hall, ISBN 0-582-38210-6, Harlow 2001.

Recommended references:

[2]. R. M. Martin: Electronic Structure: Basic Theory and Practical Methods (Vol 1), Cambridge University Press, ISBN 0-521-78285-6, Cambridge 2004.

Special aids:

Computer classroom of DSSE equipped with MS software.

Note:
Time-table for winter semester 2019/2020:
Time-table is not available yet
Time-table for summer semester 2019/2020:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2019-09-15
For updated information see http://bilakniha.cvut.cz/en/predmet4583806.html