Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2020/2021

Physics of Dielectrics

The course is not on the list Without time-table
Code Completion Credits Range
D11DIEL ZK
Lecturer:
Tutor:
Supervisor:
Department of Solid State Engineering
Synopsis:

Electrical, thermal, and mechanical properties of dielectrics and switching of polarization in ferroelectrics are described in details. Interaction of electromagnetic field with dielectric materials is studied in a wide frequency range from point of view of classical and quantum physics.

Requirements:

It is recommended to complete Solid State Theory lecture (11TPL1 at FNSPE).

Syllabus of lectures:

1. Introduction, 1 lecture

2. Dielectrics in electrostatic field, 1 lecture

3. Dielectrics in time-dependent field, 1 lecture

4. Optical properties of dielectrics, 1 lecture

5. Non-linear dielectrics, 1 lecture

6. Main and coupled effects in dielectrics, 1 lecture

7. Breakdown of dielectrics, 1 lecture

8. Ferroelectrics, 1 lecture

9. Domain structure of ferroelectrics, 1 lecture

10. Antiferroelectrics, 1 lecture

11. Multiferroics, 2 lectures

12. Application of ferroic materials in technique, 1 lecture.

Syllabus of tutorials:
Study Objective:

Knowledge:

The aim of lecture is to understand the electrical, thermal, and mechanical behaviour of dielectrics and switching of polarization in ferroelectrics. The emphasis is devoted to interaction of electromagnetic field with dielectric materials in a wide frequency range.

Skills:

Orientation in the effects and properties related to ferroelectric and multiferroic phenomena.

Study materials:

Key references:

[1] Born, M. and Wolf, E. (2006), Principles of optics (7th edn), Cambridge University Press, Cambridge.

[2] Kao, K. C. (2004), Dielectric phenomena in solids, Elsevier Academic Press, London.

Recommended references:

[3] Nye, J. F. (1964), Physical Properties of Grystals, Claredon Press, Oxford.

[4] Blinc, R., Žekš B. (1974), Soft Modes in Ferroelectrics and Antiferroelectrics, North-Holland Publishing Company, Amsterodam.

[5]. Strukov, B. A. Lavanyuk , A. P. (1998), Ferroelectric Phenomena in Crystals, Springer Verlag Berlin.

[6]. Pardo, L. Ricote, (2011), J. Multifunctional Polycrystalline Ferroelectric Materials, Springer Series in Materials Science, Vol. 140.

Note:
Further information:
No time-table has been prepared for this course
The course is a part of the following study plans:
Data valid to 2020-09-25
For updated information see http://bilakniha.cvut.cz/en/predmet4583106.html