Laser-plasma as a Source of Particles and Radiation

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
12LPZ ZK 2 2+0 Czech
Jaroslav Nejdl (guarantor)
Jaroslav Nejdl (guarantor)
Department of Physical Electronics

Students will get acquinted with physical principles of interaction of intense laser beams with matter with a stress on generation of secondary sources of radiation and accelerated particles and selected applications of these sources. After definition of basic quantities and description of interaction of bound electron with low frequency field, the principles of high-order harmonic generation and generation of single attosecund pulseswill be explained followed by plasma-based x-ray lasers and radiation from hot plasma. Next block of lectures will focus on methods of generation hard x-rays from relativistic laser beams, electron and ion acceleration and selected interdisciplinary applications of these secondary sources.


The level of the class expects knowledge of basic course of university mathematics and physics and basics of plasma physics.

Syllabus of lectures:

1. Means of generation and mathematical description of intense laser fields.

2. Interaction of an atom with low-frequency electromagnetic field

3. Particularity of laser plasma

4. High-order harmonic generation

5. Generation of single attosecond pulses

6. Plasma-based x-ray lasers

7. Radiation of hot plasmas

8. Laser wake-field electron acceleration

9. Synchrotron radiation

10. Radiation from laser-generated relativistic electron beams

11. Methods of ion acceleration by laser

12. Interdisciplinary application of intense lasers and secondary

sources of radiation and particles

Syllabus of tutorials:
Study Objective:


Student will get familiar with physicsl principles of laser-based sources of short-wavelength radiation and accelerated particles.


Students will deepen the abilities to apply theoretial knowledge of mathematics and physics in complex problems concerning generation of secondary sources of radiation and accelerated particles.

Study materials:

Key references:


Recommended references:

[1] P. Gibbon: Short Pulse Laser Interactions With Matter: An Introduction, Imperial College Press 2005.

[2] Z. Chang: Fundamentals of Attosecond Optics, CRC Press 2011.

[3] F. Krausz and M. Ivanov, Attosecond physics, Reviews of Modern Physics 81, 2009.

[4] D. Attwood: Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications, Cambridge University Press, Cambridge 1999.

[5] P. Jaeglé: Coherent Sources of XUV Radiation: Soft X-Ray Lasers and High-Order Harmonic Generation, Springer-Verlag, Berlin-Heidelberg-New York 2006.

[6] I. H. Hutchinson: Principles of Plasma Diagnostics. Cambridge University Press 2002.

[7] E. Esarey, C. B. Schroeder, and W. P. Leemans, Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys. 81, p. 1229 (2009).

[8] E. L. Saldin, E. A. Schneidmiller, M. V. Yurkov: The Physics of Free Electron Lasers, Springer-Verlag, Berlin-Heidelberg-New York 2000.

[9] S. Corde et al., Femtosecond X-rays from Laser-Plasma Accelerators, Rev. Mod. Phys. 85, p. 1 (2013).

[10] H. Daido, M. Nishiuchi, and A. Pirozhkov, Review of laser-driven ion sources and their applications, Rep. Prog. Phys. 75, 056401 (2012).

Time-table for winter semester 2020/2021:
Time-table is not available yet
Time-table for summer semester 2020/2021:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2021-02-28
For updated information see http://bilakniha.cvut.cz/en/predmet3263206.html